Понятие модели и моделирования. Квазидетерминированные случайные процессы

Тест по теме " Моделирование и формализация"

1. Что называется атрибутом объекта?

    Представление объекта реального мира с помощью некоторого набора его характеристик, существенных для решения данной информационной задачи.

    Абстракция предметов реального мира, объединяемых общими характеристиками и поведением.

    Связь между объектом и его характеристиками.

    Каждая отдельная характеристика, общая для всех возможных экземпляров

2. Выбор вида модели зависит от:

    Физической природы объекта.

    Предназначения объекта.

    Цели исследования объекта.

    Информационной сущности объекта.

3. Что такое информационная модель объекта?

    Материальный или мысленно представляемый объект, замещающий в процессе исследования исходный объект с сохранением наиболее существенных свойств, важных для данного исследования.

    Формализованное описание объекта в виде текста на некотором языке кодирования, содержащем всю необходимую информацию об объекте.

    Программное средство, реализующее математическую модель.

    Описание атрибутов объектов, существенных для рассматриваемой задачи и связей между ними.

4. Укажите классификацию моделей в узком смысле слова:

    Натурные, абстрактные, вербальные.

    Абстрактные, математические, информационные.

    Математические, компьютерные, информационные.

    Вербальные, математические, информационные

5. Целью создания информационной модели является:

    Обработка данных об объекте реального мира с учетом связи между объектами.

    Усложнение модели, учитывая дополнительные факторы, которые были ранее проинформированы.

    Исследование объектов, основанное на компьютерном экспериментировании с их математическими моделями.

    Представление объекта в виде текста на некотором искусственном языке, доступном компьютерной обработке.

6. Какая модель является статической (описывающей состояние объекта)?

    Формула равноускоренного движения

    Формула химической реакции

    Формула химического соединения

    Второй закон Ньютона.

7. Формализация - это

    Этап перехода от содержательного описания связей между выделенными признаками объекта к описанию, использующему некоторый язык кодирования.

    Замена реального предмета знаком или совокупностью знаков.

    Переход от нечетких задач, возникающих в реальной действительности, к формальным информационным моделям.

    Выделение существенной информации об объекте.

8. Информационной технологией называется

    Процесс, определяемый совокупностью средств и методов обработки, изготовления, изменения состояния, свойств, формы материала.

    Изменение исходного состояния объекта.

    Процесс, использующий совокупность средств и методов обработки и передачи первичной информации нового качества о состоянии объекта, процесса или явления.

    Совокупность определенных действий, направленных на достижение поставленной цели.

9. Материальной моделью является:

1. Анатомический муляж;

2. Техническое описание компьютера;

3. Рисунок функциональной схемы компьютера;

4. Программа на языке программирования.

10. Что такое компьютерная информационная модель?

    Представление объекта в виде теста на некотором искусственном языке, доступном компьютерной обработке.

    Совокупность информации, характеризующая свойства и состояние объекта, а также взаимосвязь с внешним миром.

    Модель в мысленной или разговорной форме, реализованная на компьютере.

    Метод исследования, связанный с вычислительной техникой.

11. Компьютерный эксперимент состоит из последовательности этапов:

    Выбор численного метода - разработка алгоритма - исполнение программы на компьютере.

    Построение математической модели - выбор численного метода - разработка алгоритма - исполнение программы на компьютере, анализ решения.

    Разработка модели - разработка алгоритма - реализация алгоритма в виде программного средства.

    Построение математической модели - разработка алгоритма - исполнение программы на компьютере, анализ решения.

вопроса

ответа

По способу отражения свойств объекта (по возможности реализации) модели классифицируются на предметные (реальные, материальные) и абстрактные (мысленные, информационные – в широком смысле). В узком смысле под информационными понимаются абстрактные модели, реализующие информационные процессы (возникновение, передачу, обработку и использование информации) на компьютере.

Предметные модели представлены реальными объектами, воспроизводящими геометрические, физические и другие свойства моделируемых систем в материальной форме (глобус, манекен, макет, муляж, каркас и др.). Реальные модели делят на натурные (проведение исследования на реальном объекте и последующая обработка результатов эксперимента с применением теории подобия) и физические (проведение исследования на установках с аналогичными изучаемому процессами, которые сохраняют природу явления и обладают физическим подобием).

Абстрактные модели позволяют представлять системы, которые трудно или невозможно моделировать реально, в образной или знаковой форме. Образные или наглядные модели (рисунки, фотографии) представляют собой наглядные зрительные образы, зафиксированные на материальном носителе информации (бумага, плёнка). Знаковые или символьные модели представляют основные свойства и отношения моделируемого объекта с использованием различных языков (знаковых систем), например, географические карты. Вербальные модели – текстовые – используют для описания объектов средства естественного языка. Например, правила дорожного движения, инструкция к прибору.

Математические модели – широкий класс знаковых моделей, использующих математические методы представления (формулы, зависимости) и получения исследуемых характеристик реального объекта. Назовём некоторые разновидности математических моделей. Дескриптивные (описательные) – констатируют фактическое положение дел, без возможности влияния на моделируемый объект. Оптимизационные – дают возможность подбирать управляющие параметры. Игровые – изучают методы принятия решений в условиях неполной информации. Имитационные – подражают реальному процессу.

По цели использования модели классифицируются на научный эксперимент , в котором осуществляется исследование модели с применением различных средств получения данных об объекте, возможности влияния на ход процесса с целью получения новых данных об объекте или явлении; комплексные испытания и производственный эксперимент , использующие натурное испытание физического объекта для получения высокой достоверности о его характеристиках; оптимизационные , связанные с нахождением оптимальных показателей системы (например, нахождение минимальных затрат или определение максимальной прибыли).

По наличию случайных воздействий на систему модели делятся на детерминированные (в системах отсутствуют случайные воздействия) и стохастические (в системах присутствуют вероятностные воздействия). Эти же модели некоторые авторы классифицируют по способу оценки параметров системы: в детерминированных системах параметры модели оцениваются одним показателем для конкретных значений их исходных данных; в стохастических системах наличие вероятностных характеристик исходных данных позволяет оценивать параметры системы несколькими показателями.

По отношению ко времени модели разделяют на статические , описывающие систему в определённый момент времени, и динамические , рассматривающие поведение системы во времени. В свою очередь, динамические модели подразделяют на дискретные , в которых все события происходят по интервалам времени, и непрерывные , где все события происходят непрерывно во времени.

По области применения модели подразделяют на универсальные , предназначенные для использования многими системами, и специализированные , созданные для исследования конкретной системы.

КЛАССИФИКАЦИЯ МОДЕЛЕЙ Признаки классификаций моделей: 1) по области использования; 2) по фактору времени; 3) по отрасли знаний; 4) по форме представления 1) Классификация моделей по области использования: Учебные модели – используются при обучении; Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик Научно ­ технические ­ создаются для исследования процессов и явлений Игровые – репетиция поведения объекта в различных условиях Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок) 2) Классификация моделей по фактору времени: Статические – модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных…., строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд. Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций. 3) Классификация моделей по отрасли знаний ­ это классификация по отрасли деятельности человека: Математические, биологические, химические, социальные, экономические, исторические и тд 4) Классификация моделей по форме представления:

Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта­оригинала. Это экспериментальный метод познания окружающей среды.Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. это теоретический метод познания окружающей среды. По признаку реализации они бывают: мысленные и вербальные; информационные Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека. Вербальные – мысленные модели выраженные в разговорной форме. Используется для передачи мыслей Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта. Типы информационных моделей: – объекты и их свойства представлены в виде списка, а их значения Табличные размещаются в ячейках прямоугольной формы. Перечень однотипных объектов размещен в первом столбце (или строке), а значения их свойств размещаются в следующих столбцах (или строках) Иерархические – объекты распределены по уровням. Каждый элемент высокого уровня состоит из элементов нижнего уровня, а элемент нижнего уровня может входить в состав только одного элемента более высокого уровня – применяют для отражения систем, в которых связи между элементами имеют Сетевые сложную структуру По степени формализации информационные модели бывают образно­знаковые и знаковые. Напримеры: Образно­знаковые модели: Геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение) Структурные (таблица, граф, схема, диаграмма)

Словесные (описание естественными языками) Алгоритмические (нумерованный список, пошаговое перечисление, блок­схема) Знаковые модели: Математические – представлены матем.формулами, отображающими связь параметров Специальные – представлены на спец. языках (ноты, хим.формулы) Алгоритмические – программы Признаки классификаций моделей:Классификация моделей по области использования Классификация моделей Существуют разные способы классификации моделей:  по классам задач;  по области использования;  по способу представления и др. Из классов задач, по которым разделяют модели, можно назвать: анализ, синтез, конструирование, проектирование, управление, утилизация и т. п. По области использования модели разделяют:  учебные – наглядные пособия, различные тренажеры, обучающие программы;  опытные – копии объектов, которые используются для исследования объекта и прогнозирования его характеристик в будущем;  научно­технические, используемые для исследования процессов и явлений (различные стенды, моделирующие физические и природные явления);  игровые – военные, экономические, спортивные и деловые игры;  имитационные, которые моделируют с той или иной точностью работу объекта в различных условиях и, как правило, с учетом случайных факторов. Алгоритм (компьютерная программа), реализующий имитационную модель, воспроизводит процесс функционирования системы во времени, причем имитируются элементарные события, составляющие процесс, с сохранением их логической структуры и последовательностью протекания во времени. Это позволяет по исходным данным получить сведения о состоянии процесса в

определенные моменты времени, дающие возможность оценить характеристики системы. Примером имитационной модели может служить программа расчета аварийного переходного процесса в электроэнергетической системе, когда во время протекания процесса имитируются события срабатывания различной автоматики и коммутации оборудования системы. Способ представления модели – наиболее важный признак классификации моделей. Все модели можно разделить на две группы: материальные и идеальные (информационные). В свою очередь физические модели разделяют на физические, аналоговые и геометрически подобные (макеты) (рис. 1.3). Рис. 1.3. Классификация моделей по способу представления Физические модели имеют ту же природу, что и моделируемые объекты. Это, как правило, уменьшенные копии объектов, сохраняющие его основные физические свойства. Так, например, работу гидравлической турбины можно исследовать на лабораторной установке, воспроизводящей в масштабе настоящую турбину. Исследование работы генератора электростанции также можно выполнить на малой электрической машине переменного тока. Модели автомобилей, судов, самолетов, луноходов и других машин, которые являются физическими моделями, помогают инженерам исследовать механические, тепловые, электрические, магнитные, химические и другие свойства различных машин. Иногда исследования проводятся на моделях, которые имеют отличную от исходного объекта физическую природу. Так, механические свойства движения вращающегося объекта (вала) можно исследовать на электрической модели, и, наоборот, токи и напряжения электрической цепи можно моделировать с помощью сил и скоростей элементов механической системы. Такие модели называют аналоговыми. Получило развитие направление моделирования с помощью специальных аналоговых вычислительных машин (АВМ), в отличие от цифровых вычислительных машин (ЦВМ). Многие физические и аналоговые модели исследуются в динамике, т. е. изменении

их параметров и свойств во времени. Моделирование предусматривает масштабирование не только по переменным модели, но и по времени; таким образом, процессы, протекающие в моделях, воспроизводятся в замедленном или ускоренном движении. Геометрически подобные модели – это макеты зданий, сооружений и природных объектов. Они изготавливаются для решения учебных, архитектурных, экологических и инженерных задач. Идеальные модели носят информационный характер. Они возникают и строятся в сознании людей и используются как любая информация. Можно сказать, что информация – это модель окружающего нас мира. Идеальные модели в зависимости от средств их изображения, передачи, хранения и использования подразделяются на знаковые и вербальные. Знаковые модели используют какой­либо формализованный язык – литературный, математический, алгоритмический и др. Вербальными можно считать образные модели в сознании людей и передаваемые ими посредством разговорной речи. Знаковые и вербальные модели взаимосвязаны. Мысленный образ, родившийся в мозгу человека, может быть облечен в знаковую форму, и, наоборот, знаковая модель позволяет сформировать в сознании верный мысленный образ. Знаковые модели, записанные на каком­либо носителе (бумажном, магнитном, электрическом, оптическом и др.), передаются между людьми, обрабатываются на компьютерах и сохраняются для следующих поколений. В зависимости от этого можно выделить несколько видов знаковых моделей: дескриптивные, имитационные, алгоритмические, математические, базы данных и знаний. Математическое представление об объекте должно согласовываться с возможностью дальнейшего анализа и исследования объекта по его математической модели. Каждый объект и система могут моделироваться на разных иерархических уровнях восприятия человеком окружающего мира. Принято разделять моделирование технических объектов по трем уровням: микро­, макро­ и метауровень. На каждом из этих уровней применимы свои классы моделей, различающиеся главным образом представлением пространства и времени. Описание моделей разных иерархических уровней дано в разд. 1.6–1.8. Классификация моделей

При построении математических моделей процессов функционирования систем существуют следующие основные подходы: непрерывно­детерминированный (например, дифференциальные уравнения, уравнения состояния); дискретно­детерминированный (конечные автоматы); дискретно­стохастический (вероятностные автоматы); непрерывно­ стохастический (системы массового обслуживания); обобщенный или универсальный (агрегативные системы). Классификация моделей и видов моделирования объектов и систем в соответствии с теорией подобия должна выделить в них наиболее общие признаки и свойства реальных систем. Ниже приведена одна из возможных классификаций. Признаки классификации Виды математических моделей 1. Принадлежность к иерархическому уровню 2. Характер взаимоотношений со средой 3. Характер отображаемых свойств объекта 4. Способ представления свойств объекта 5. Способ получения модели 6. Причинная обусловленность  Модели микроуровня  Модели макроуровня  Модели метауровня  Открытые непрерывный обмен)  Закрытые (слабая связь)  Структурные  Функциональные  Аналитические  Алгоритмические  Имитационные  Теоретические  Эмпирические  Детерминированные  Вероятностные

7. По отношению к времени 8. По типу уравнений 9. По множеству значений переменных 10. По назначению  Динамические  Статические  Линейные  Нелинейные  Непрерывные  Дискретные  Дискретно­непрерывные  Технические  Экономические  Социальные и т.д. Моделирование в целом включает в себя ряд этапов, базирующихся на системном подходе: 1. Содержательная постановка задачи: выработка общиго подхода к исследуемой проблеме; определение подзадач; определение основной цели и путей ее достижения. 2. Изучение и сбор информации об объекте­оригинале: анализ или подбор подходящих гипотез, аналогий, теорий; учет опытных данных, наблюдений и т.д.; определение входных и выходных переменных, связей; принятие упрощающих предположений. 3. Формализация: принимаются условные обозначения и с их помощью описываются связи между элементами объекта в виде математических выражений. Намечается переход к количественному анализу. 4. Выбор метода решения. Для поставленной математической задачи обосновывается метод ее решения с учетом знаний и предпочтений пользователя и разработчика. При проектировании приходится решать как линейные, так и нелинейные задачи, использовать ручные и машинные методы проектирования, расчета и исследований, 5. Реализация модели. Принимается критерий оценки эффективности модели, разрабатывается алгоритм, пишется и отлаживается программа, чтобы осуществить системный анализ и синтез.

6. Анализ полученных результатов. Сопоставляется предполагаемое и полученное решение, проводится оценка адекватности и погрешности моделирования. Процесс моделирования является итеративным. В случае неудовлетворительных результатов, полученных на этапах 5 или 6,осуществляется возврат к одному из ранних этапов, который мог привести к разработке неудачной модели. Уточнение модели происходит до тех пор, пока не будут получены приемлемые результаты. Таким образом, после прохождения этих этапов наиболее полно могут быть выполнены требования, предъявляемые к моделям:  Универсальность - характеризует полноту отображения моделью изучаемых свойств реального объекта;  Адекватность - способность отражать нужные свойства объекта с погрешностью не выше допустимой;  Точность - оценивается степенью совпадения значений характеристик реального объекта со значениями этих характеристик, полученных с помощью моделей;  Экономичность - определяется затратами ресурсов ЭВМ (памяти и времени на ее реализацию и эксплуатацию). Качество моделирования может быть оценено характеристикой его потребительских свойств:  эффективность использования его по назначению (цели);  ресурсоемкость;  стоимость. Эти характеристики (показатели) в развернутом виде представлены на рис.1.1 . Математический подход к моделированию имеет ряд недостатков:  низкая адекватность математической модели реальному объекту;  проблемы, связанные с решаемостью математических моделей из­за наличия в них разрывных функций;  непригодность математических моделей для большинства объектов с переменной структурой;

 приближенные методы реализаций моделей с переменными коэффициентами требуют значительных затрат и не обладают достаточной точностью решения. В настоящее время имитационное моделирование в основном реализуется на ЦВМ. Исходное математическое описание любой динамической системы представляет собой совокупность дифференциальных, алгебраических, логических, разностных уравнений, описывающих физические процессы в отдельных функциональных элементах системы. Классификация моделей В учебнике Информационная культура. Кодирование информации. Информационные модели. (9­10 класс) авторы А.Г.Кушнеренко, А.Г.Леонов и др. классификации моделей по каким либо признакам не производится. Авторы предлагают построить модели (зрительный зал, расписание, модели геометрической информации и пр. Видимо, по их мнению классификация моделей в школе не требуется. Хочу сразу не согласиться с этим. Я думаю, что классификация моделей позволяет ученикам видеть модели объектов и процессов в обыденной жизни и пытаться осмысленно строить и использовать модели, для решения широкого спектра вопросов. В пособии для учителей Земля информатика А.Г.Гейна вопросы классификации моделей не выделены в отдельную главу, но в главе 3 "Самостоятельная жизнь моделей" после рассмотрения нескольких моделей, автор поясняет, что каждая из этих моделей относится к своему классу В учебнике Информатика 9 класс под редакцией Н.В.Макаровой в процессе изучения темы "Классификация моделей " ребята узнают по каким признакам можно классифицировать модели; что такое информационная модель и чем она отличается от материальной; виды информационных моделей по форме представления и по способу реализации. Вот признаки, которые автор классифицирует модели: область использования, учет в модели временного фактора, отрасли знаний, способа представления моделей. В задачнике­практикуме под редакцией И.Г.Семакина и Е.Г.Хеннера в главе, посвященной компьютерному моделированию вопросу классификации уделяется немного места. Авторы указывают, что в прикладных областях человеческой деятельности различаются следующие виды абстрактных моделей. Но далее рассматривается несколько направлений компьютерного моделирования на примерах конкретных задач: задачи

динамическоко моделирования, задачи статического и имитационного моделирования, моделирование знаний. При этом перед разбором конкретных задач дается краткое определение соответствующего класса задач. В пособии "Методика преподавания информатики" А.И.Бочкина вопросам классификации моделей отводится большое внимание. В приведенных фрагментах мной сохранен стиль соответствующих учебников. Классификация моделей приведенная в задачнике Семакина В прикладных областях человеческой деятельности различаются следующие виды абстрактных моделей. 1. Вербальные (текстовые модели). Эти модели используют последовательность предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примерами такого рода моделей является милицейский протокол, правила дорожного движения и пр.) 2. Математические модели, выражающие существенные черты объекта или процесса языком уравнений и других математических средств. Они традиционны для теоретической физики, механики, химии, биологии и ряда других, в том числе гуманитарных и социальных наук. 3. Информационные модели ­ класс знаковых моделей, описывающих информационные процессы (возникновение, передачу и использование информации в системах самой разнообразной природы. Возврат в начало Классификация с учетом фактора времени и области использования (Макарова Н.А.) Статическая модель ­ это как бы одномоментный срез информации по объекту (результат одного обследования) Динамическая модель­позволяет увидеть изменения объекта во времени(Карточка в

поликлинике) Можно классифицировать модели и по тому, к какой области знаний они принадлежат(биологические,исторические, экологические и т.п.) Возврат в начало Классификация по области использования (Макарова Н.А.) Учебные­наглядные пособия, тренажеры,обучающие программы Опытные модели­уменьшенные копии (автомобиль в аэродинамической трубе) Научно­технические­синхрофазотрон, стенд для проверки электронной аппаратуры Игровые­экономические, спортивные, деловые игры Имитационные­не просто отражают реальность, но имитируют ее(на мышах испытываеется лекарство, в школах проводятся эксперементы и т.п. .Такой метод моделирования называетсяметодом проб и ошибок Возврат в начало Классификация по способу представления Макарова Н.А.) Материальные модели­иначе можно назвать предметными. Они воспринимают геометрические и физические свойства оригинала и всегда имеют реальное воплощение Информационные модели­нельзя потрогать или увидеть. Они строятся только на информации.Информационная модель совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром. Вербальная модель ­ информационная модель в мысленной или разговорной форме. Знаковая модель­информационная модель выраженная знаками,т.е. средствами любого

формального языка. Компьютерная модель ­модель, реализованная средствами программной среды. Возврат в начало Классификация моделей, приведенная в книге "Земля Информатика" (Гейн А.Г.)) "...вот нехитрая на первый взгляд задача: сколько потребуется времени, чтобы пересечь пустыню Каракумы? Ответ,разумеется зависит от способа передвижения. Если путешествоватьна верблюдах, то потребуется один срок, другой­если ехать на автомобиле, третий ­ если лететь самолетом. А самое главное ­ для планирования путешествия требуются разные модели. Для первого случая требуемую модель можно найти в мемуарах знаменитых исследователей пустынь: ведь здесь не обойтись без информации об оазисах и верблюжьих тропах. Во втором случае незаменимая информация, содержащаяся в атласе автомобильных дорог. В третьем ­ можно воспользоваться расписанием самолетных рейсов. Отличаются эти три модели ­ мемуары, атлас и расписание и характером предьявления информации. В первом случае модель представлена словесным описанием информации (описательная модель), во втором­ как бы фотографией с натуры (натурная модель), в третьем ­ таблицей содержащей условные обозначения: время вылета и прилета, день недели, цена билета (так называемая знаковая модель) Впрочем это деление весьма условно­ в мемуарах могут встретиться карты и схемы (элементы натурной модели), на картах имеются условные обозначения (элементы знаковой модели), в расписании приводится расшифровка условных обозначений (элементы описательной модели). Так что эта классификация моделей... на наш взгля малопродуктивна" На мой взгляд этот фрагмент демонстрирует общий для всех книг Гейна описательный (замечательный язык и стиль изложения) и как бы, сократовский стиль обучения (Все считают что это вот так. Я совершенно согласен с вами, но если приглядеться, то...). В таких книгах достаточно сложно найти четкую систему определений (она и не предполагается автором). В учебнике под редакцией Н.А. Макаровой демонстрируется другой подход ­ определения понятий четко выделены и несколько статичны. Возврат в начало Классификация моделей приведенная в пособии А.И.Бочкина Способов классификации необычно много.Приведем лишь некоторые, наиболее известные

основания и признаки:дискретность и непрерывность,матричные и скалярные модели, статические и динамические модели, аналитические и информационные модели, предметные и образно­знаковые модели, масштабные и немасштабные... Каждый признак даетопределенное знание о свойствах и модели, и моделируемой реальности. Признак может служить подсказкой о способе выполненного или предстоящего моделирования. Дискретность и непрерывностьДискретность­ характерный признак именно компьютерных моделей.Ведь компьютер может находиться в конечном, хотя и очень большом количестве состояний. Поэтому даже если объект непрерывен (время), в модели он будет изменяться скачками. Можно считать непрерывность признаком моделей некомпьютерного типа. Случайность и детерминированность. Неопределенность, случайность изначально противостоит компьютерному миру: Запущенный вновь алгоритм должен повториться и дать те же результаты. Но для имитации случайных процессов используют датчики псевдослучайных чисел. Введение случайности в детерминированные задачи приводит к мощным и интересным моделям (Вычисление площади методом случайных бросаний). Матричность ­ скалярность. Наличие параметров у матричной модели говорит о ее большей сложности и, возможно, точности по сравнению со скалярной. Например, если не выделить в населении страны все возрастные группы, рассматривая его изменение как целое, получим скалярную модель (например модель Мальтуса), если выделить, ­ матричную (половозрастную). Именно матричная модель позволила объяснить колебания рождаемости после войны. Статичность динамичность. Эти свойства модели обычно предопределяются свойствами реального объекта. Здесь нет свободы выбора. Просто статическая модель может быть шагом кдинамической, либо часть переменных модели может считаться пока неизменной. Например, спутник движется вокруг Земли, на его движение влияет Луна. Если считать Луну неподвижной за время оборота спутника, получим более простую модель. Аналитические модели. Описание процессов аналитически, формулами и уравнениями. Но при попытке построить график удобнее иметь таблицы значений функции и аргументов. Имитационные модели. Имитационные модели появились давно в виде масштабных копий кораблей, мостов и пр. появились давно, но в связи с компьютерами рассматриваются недавно. Зная как связаны элементы модели аналитически и логически, проще не решать систему неких соотношений и уравнений, а отобразить реальную систему в память компьютера, с учетом связей между элементами памяти. Информационные модели. Информационные модели принято противополагать математическим, точнее алгоритмическим. Здесь важно соотношение объемов данные/алгоритмы. Если данных больше или они важнее имеем информационную модель,

иначе ­ математичеескую. Предметные модели. Это прежде всего детская модель ­ игрушка. Образно­знаковые модели. Это прежде всего модель в уме человека: образная, если преобладают графические образы, и знаковая, если больше слов или (и) чисел. Образно­ знаковые модели строятся на компьютере. Масштабные модели. К масштабным моделям те из предметных или образных моделей, которые повторяют форму объекта (карта). Возврат в начало

1. Определение модели. Классификация.

Исследование значения моделирования должно начинаться с определения понятия "модель".

Слово "модель" означает: мера, образ, способ и т.д. Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью. По мнению многих авторов, модель использовалась первоначально как изоморфная теория. После создания Декартом и Ферма аналитической геометрии моделью стало понятие подразумевающее теорию, которая обладает структурным подобием по отношению к другой теории. Две такие теории называются изоморфными, если одна из них выступает как модель другой, и наоборот.

С другой стороны, в таких науках о природе, как астрономия, механика, физика, химия, термин "модель" стал применяться для обозначения того, к чему даннная теория относится или может относиться, того, что она описывает. В А.Штофф отмечает, что здесь со словом "модель" связаны два близких, но несколько различных понятия. Под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую часть действительности в упрощенной и наглядной форме. Таковы, в частности представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями. Модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя сам характер и степень упрощения, вносимые моделью, могут со временем меняться.

В более узком смысле термин "модель" применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более хорошо изученной, легче понимаемой. Так, физики 18 века пытались изобразить оптические и электрические явления посредством механических ("планетарная модель атома" - строение атома изображалось как строение солнечной системы).

Таким образом, в этих двух случаях под моделью понимается либо конкретный образ изучаемого объекта, в котором отображаются реальные или предполагаемые свойства, строение и т.д., либо другой объект, реально существующий наряду с изучаемым и сходный с ним в отношении некоторых определенных свойств или структурных особенностей. В этом смысле модель - не теория, а то, что описывается данной теорией - своеобразный предмет данной теории.

В научной литературе анализируется несколько понятий модели, но наиболее полное определение понятия "модель" дает В. А. Штофф в своей книге "Моделироваеие и философия". Под моделью понимается такая мысленно представляемая или материально реализуемая система, которая отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает нам новую информацию об этом объекте.

В литературе, посвященной философским аспектам моделирования представлены различные классификационные признаки, по которым выделены различные типы моделей. Остановимся на некоторых из них.

Так называются такие признаки, как:

  • способ построения (форма модели),
  • качественная специфика (содержание модели).

По способу построения модели бывают материальные и идеальные. Остановимся на группе материальных моделей. Несмотря на то, что эти модели созданы человеком, но они существуют объективно. Их назначение специфическое -воспроизведение структуры, характера, протекания, сущности изучаемого процесса:

  • отразить пространственные свойства
  • отразить динамику изучаемых процессов, зависимости и связи.

Материальные модели неразрывно связаны с объектами отношением аналогии В этом свете материальные модели делятся на мысленные и материальные.

Материальные модели неразрывно связаны с воображаемыми (даже, прежде, чем что-либо построить - сначала теоретическое представление, обоснование) эти модели остаются мысленными даже в том случае, если они воплощены в какой-либо материальной форме. Большинство этих моделей не претендует на материальное воплощение. По форме они могут быть:

а) Образные, построенные из чувтсвенно наглядных элементов.

б) Знаковые. В этих моделях элементы отноения и свойтсва моделиуемых явлений выражены при помощи определенных знаков.

в) Смешанные, сочетающие свойства и образных, и знаковых моделей.

Достоинства данной классификации в том, что она дает хорошую основу для анализа двух основных функций модели:

  • практической (в качестве орудия и средства научного эксперимента)
  • теоретической (в качестве специфического образа действительности, в котором содержатся элементы логического и чувственного, абстрактного и конкретного, общего и единичного).

Другая классификация есть у Б. А. Глинского в его книге "Моделирование как метод научного исследования", где наряду с обычным делением моделей по способу их реализации, они делятся и по характеру воспроизведения сторон оригинала:

  • субстанциональные
  • структурные
  • функциональные
  • смешанные

А.Н. Кочергин предлагает рассматривать и такие классификационные признаки, как: природа моделируемых явлений, степень точности, объем отображаемых свойств и др.

Дадим определение понятия моделирование. Моделирование - метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (органических и неорганических систем, инженерных устройств, разнообразных процессов - физических, химических, биологических, социальных) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления и т.п. Моделирование может быть:

  • предметным (исследование объекта на модели основных геометрических,физических, динамических, функциональных его характкристик)
  • физическим (воспроизведение физических процессов)
  • предметно-математическим (исследование физического процесса путем опытного изучения каких-либо явлений иной физической природы,но описываемых те ми же математическими соотношениями, что и моделируемый процесс)
  • знаковым (расчетное моделирование, абстрактно-математическое)

2. Основные функции моделей.

Выясним, в чем специфика модели в качестве средства экспериментального исследования в сравнении с другими экспериментальными средствами. Рассмотрение материальных моделей в качестве средств, орудий экспериментальной деятельности вызывает потребность выяснить, чем отличаются те эксперименты, в которых используются модели, от тех, где они не применяются. Возникает вопрос о той специфике, которую вносит в эксперимент применение в нем модели.

Под экспериментом понимается вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействии на изучаемый объект(процесс) посредством специальных инструментов и приборов.

Существует особая форма эксперимента, для которой характерно использование действующих материальных моделей в качестве специальных средств экспериментального исследования. Такая форма называется модельным экспериментом.

В отличии от обычного эксперимента, где средства эксперимента так или иначе взаимодействуют с объектом исследования, здесь взаимодействия нет, так как экспериментируют не с самим объектом, а с его заместителем При этом объект-заместитель и экспериментальная установка объединяются, сливаются в действующей модели в одно целое. Таким образом, обнаруживается двоякая роль, которую модель выполняет в эксперименте: она одновременно является и объектом изучения и экспериментальным средством.

Для модельного эксперимента, по мнению исследователей характерны следующие основные операции:

  • переход от натурального объекта к модели - построение модели (моделирование в собственном смысле слова).
  • экспериментальное исследование модели.
  • переход от модели к натуральному объекту, состоящий в перенесении результатов, полученных при исследовании, на этот объект.

Модель входит в эксперимент, не только замещая объект исследования, но и замещая условия, в которых изучается некоторый объект обычного эксперимента.

Обычный эксперимент предполагает наличие теоретического момента лишь в начальный момент исследования - выдвижение гипотезы, ее оценку и т.д. Теоретические соображения, связанные с конструированием установки, а также на завершающей стадии - обсуждение и интерпретация полученных данных, их обобщение; в модельном эксперименте необходимо также обосновать отношение подобия между моделью и натуральным объектом и возможность экстраполировать на этот объект полученные данные.

3. Моделирование и проблема истины.

Интересен вопрос о том, какую роль играет само моделирование, то есть построение моделей, их изучение и проверка в процессе доказательства истинности и поисков истинного знания.

Что же следует понимать под истинностью модели? Если истинность вообще -соотношение наших знаний объективной действительности, то истинность модели означает соответствие модели объекту, а ложность модели -отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются более общими, более абстрактными.

Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего, заведомо допускается несохранение сходства между моделью и оригиналом по ряду параметров, которые вообще не входят в формулирование условий сходства Так планетарная модель атома Резерфорда оказалась истинной в рамках(и только в этих рамках) исследования электронной структуры атома, а модель Дж.Дж. Томпсона оказалась ложной, так как ее структура не совпадала с электронной структурой. Истинность - свойство знания, а объекты материального мира не истинны, не ложны, просто существуют. Можно ли говорить об истинности материальных моделей, если они - вещи, существующие объективно, материально? Этот вопрос связан с вопросом: на каком основании можно считать материальную модель гносеологическим образом? В модели реализованы двоякого рода знания:

  • знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта.
  • теоретические знания, посредством которых модель была построена

Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, на сколько верно данная модель отражает объект и насколько полно она его отражает. В таком случае возникает мысль о сравнимости любого созданного человеком предмета с аналогичными природными объектами и об истинности этого предмета. Но это имеет смысл лишь в том случае, если подобные предметы создаются со специальной целью изобразить, скопировать, воспроизвести определенные черты естественного предмета.

Таким образом, можно говорить о том, истинность присуща материальным моделям:

  • в силу связи их с определенными знаниями;
  • в силу наличия (или отсутствия) изоморфизма ее структуры со структурой моделируемого процесса или явления,
  • в силу отношения модели к моделируемому объекту, которое делает ее частью познавательного процесса и позволяет решать определенные познавательные задачи.

Важнейший аспект, связанный с ролью моделирования в установлении истинности той или иной формы теоретического знания. Здесь модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели Успешная работа модели есть практическое доказательство истинности теории, то есть это часть экспериментального доказательства истинности этой теории

4.Особенности кибернетического моделирования.

В современном научном знании весьма широко распространена тенденция построения кибернетических моделей объектов самых различных классов. Кибернетический этап в исследовании сложных систем ознаменован существенным преобразованием "языка науки", характеризуется возможностью выражения основных особенностей этих систем в терминах теории информации и управления. Это сделало доступным их математический анализ. Кибернетическое моделирование используется и как общее эвристическое средство, и как искусственный организм, и как система-заменитель, и в функции демонстрационной. Использование кибернетической теории связи и управления для построения моделей в соответствующих областях основывается на максимальной общности ее законов и принципов: для объектов живой природы, социальных систем и технических систем.

Характеризуя процесс кибернетического моделирования, обращают внимание на следующие обстоятельства. Модель, будучи аналогом исследуемого явления, никогда не может достигнуть степени сложности последнего. При построении модели прибегают к известным упрощениям, цель которых -стремление отобразить не весь объект, а с максимальной полнотой охарактеризовать некоторый его "срез". Задача заключается в том, чтобы путем введения ряда упрощающих допущений выделить важные для исследования свойства.

Создавая кибернетические модели, выделяют информационно-управленческие свойства. Все иные стороны этого объекта остаются вне рассмотрения На чрезвычайную важность поисков путей исследования сложных систем методом наложения определенных упрощающих предположений Р. Эшби указывает, что в прошлом наблюдалось некоторое пренебрежение к упрощениям. Однако мы, занимающиеся исследованием сложных систем, не можем себе позволить такого пренебрежения. Исследователи сложных систем должны заниматься упрощенными формами, ибо всеобъемлющие исследования бывают зачастую совершенно невозможны. Анализируя процесс приложения кибернетического моделирования в различных областях знания, можно заметить расширение сферы применения кибернетических моделей: использование в науках о мозге, в социологии, в искусстве, в ряде технических наук. В частности, в современной измерительной технике нашли приложение информационные модели.

Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:

  • материальность
  • закономерный характер всех процессов
  • общность некоторых форм движения метерии
  • отражение
  • принадлежность к классу самоорганизующихся динамических систем, в которых заложены:

а) принцип обратной связи

б) структурно-функциональная аналогия

в) способность накапливать информацию есть существенные отличия, такие как:

1. моделирующему устройству присущи лишь низшие формы движения -физическое, химическое, а мозгу кроме того - социальное, биологическое;

2. процесс отражения в мозге человека проявляется в субъективно-сознательном восприятии внешних воздействий. Мышление возникает в результате взаимодействия субъекта познания с объектом в условиях социальной среды;

3. в языке человека и машины. Язык человека носит понятийный характер.

Свойства предметов и явлений обобщаются с помощью языка. Моделирующее устройство имеет дело с электрическими импульсами, которые соотнесены человеком с буквами, числами. Таким образом, машина "говорит" не на понятийном языке, а на системе правил, которая по своему характеру является формальной, не имеющей предметного содержания.

Использование математических методов при анализе процессов отражательной деятельности мозга стало возможным благодаря некоторым допущениям, сформулированным Маккаллоком и Питтсом. В их основе - абстрагирование от свойств естественного нейрона, от характера обмена веществ и т.д. - нейрон рассматривается с чисто функциональной стороны. Существующие модели, имитирующие деятельность мозга (Ферли, Кларка, Неймана, Комбертсона, Уолтера, Джоржа, Шеннона, Аттли, Берля и др.) отвлечены от качественной специфики естественных нейронов. Однако, с точки зрения изучения функциональной стороны деятельности мозга это оказывается несущественным

Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, по мнению Н.М.Амосова, создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, по его же мнению, любая модель связана с упрощением, в частности:

  • не все функции и специфические свойства учитываются,
  • отвлечение от социального, нейродинамического характера.

Таким образом, делается вывод о критическом отношении к данному методу. Нельзя переоценивать его возможности, но вместе с тем, необходимо его широкое применение в данной области с учетом разумных ограничений.

Итак, моделирование является достаточно мощным инструментом в познании окружающего мира, ведь невозможно наблюдать какое-нибудь явление тогда когда это необходимо человеку, а моделирование этого процесса пусть и не полно, но отражает его сущность и дает возможность при исследовании явления обратить внимание на более мелкие детали процесса или те которые не удалось отобразить в модели. В добавок к этому человек мысленно тоже у себя в голове строит модель процесса которого он исследует.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то