Простое вещество медь — красивый розовато-красный пластичный металл. Растворимость меди в воде и кислотах

МЕДЬ И ЕЕ СОЕДИНЕНИЯ

УРОК В 11-м ЕСТЕСТВЕННО-НАУЧНОМ КЛАССЕ

Для повышения познавательной активности и самостоятельности учащихся мы используем уроки коллективного изучения материала. На таких уроках каждый ученик (или пара учеников) получает задание, о выполнении которого он должен отчитаться на этом же уроке, причем его отчет фиксируется остальными учениками класса в тетрадях и является элементом содержания учебного материала урока. Каждый ученик вносит свою лепту в изучение темы классом.
В ходе урока меняется режим работы учеников от интраактивного (режим, при котором информационные потоки замкнуты внутри обучаемых, характерен для самостоятельной работы) к интерактивному (режим, при котором информационные потоки двусторонние, т.е. информация идет и от ученика, и к ученику, происходит обмен информацией). Учитель при этом выступает как организатор процесса, корректирует и дополняет информацию, сообщаемую учениками.
Уроки коллективного изучения материала состоят из следующих этапов:
1-й этап – установочный, на котором учитель объясняет цели и программу работы на уроке (до 7 мин);
2-й этап – самостоятельная работа учащихся по инструкции (до 15 мин);
3-й этап – обмен информацией и подведение итогов урока (занимает все оставшееся время).
Урок «Медь и ее соединения» рассчитан на классы с углубленным изучением химии (4 ч химии в неделю), проводится в течение двух академических часов, на уроке актуализируются знания учащихся по следующим темам: «Общие свойства металлов», «Отношение к металлам концентрированной серной кислоты, азотной кислоты», «Качественные реакции на альдегиды и многоатомные спирты», «Окисление предельных одноатомных спиртов оксидом меди(II)», «Комплексные соединения».
Перед уроком учащиеся получают домашнее задание: повторить перечисленные темы. Предварительная подготовка учителя к уроку заключается в составлении инструктивных карточек для учащихся и подготовке наборов для лабораторных опытов.

ХОД УРОКА

Установочный этап

Учитель ставит перед учащимися цель урока : опираясь на имеющиеся знания о свойствах веществ, спрогнозировать, подтвердить практически, обобщить сведения о меди и ее соединениях.
Учащиеся составляют электронную формулу атома меди, выясняют, какие степени окисления может проявлять медь в соединениях, какими свойствами (окислительно-восстановительными, кислотно-основными) будут обладать соединения меди.
В тетрадях учеников появляется таблица.

Свойства меди и ее соединений

Металл Cu 2 O – основный оксид CuO – основный оксид
Восстановитель CuOH – неустойчивое основание Cu(OH) 2 – нерастворимое основание
CuCl – нерастворимая соль CuSO 4 – растворимая соль
Обладают окислительно-восстановительной двойственностью Окислители

Этап самостоятельной работы

Для подтверждения и дополнения предположений учащиеся выполняют лабораторные опыты по инструкции и записывают уравнения проведенных реакций.

Инструкции для самостоятельной работы парами

1. Прокалите медную проволоку в пламени. Отметьте, как изменился ее цвет. Горячую прокаленную медную проволоку поместите в этиловый спирт. Обратите внимание на изменение ее цвета. Повторите эти манипуляции 2–3 раза. Проверьте, не изменился ли запах этанола.
Запишите два уравнения реакций, соответствующие проведенным превращениям. Какие свойства меди и ее оксида подтверждаются этими реакциями?

2. К оксиду меди(I) прилейте соляную кислоту.
Что наблюдаете? Запишите уравнения реакций, учитывая, что хлорид меди(I) – нерастворимое соединение. Какие свойства меди(I) подтверждаются этими реакциями?

3. а) В раствор сульфата меди(II) поместите гранулу цинка. Если реакция не идет, нагрейте раствор. б) К оксиду меди(II) прилейте 1 мл серной кислоты и нагрейте.
Что наблюдаете? Запишите уравнения реакций. Какие свойства соединений меди подтверждаются этими реакциями?

4. В раствор сульфата меди(II) поместите полоску универсального индикатора.
Объясните результат. Запишите ионное уравнение гидролиза по I ступени.
К раствору карбоната натрия прилейте раствор сульфата мед(II).
Что наблюдаете? Запишите уравнение реакции совместного гидролиза в молекулярном и ионном видах.

5.
Что наблюдаете?
К полученному осадку прилейте раствор аммиака.
Какие изменения произошли? Запишите уравнения реакций. Какие свойства соединений меди доказывают проведенные реакции?

6. К сульфату меди(II) прилейте раствор йодида калия.
Что наблюдаете? Составьте уравнение реакции. Какое свойство меди(II) доказывает эта реакция?

7. В пробирку с 1 мл концентрированной азотной кислоты поместите небольшой кусочек медной проволоки. Закройте пробирку пробкой.
Что наблюдаете? (Пробирку отнесите под тягу.) Запишите уравнение реакции.
В другую пробирку налейте соляной кислоты, поместите в нее небольшой кусочек медной проволоки.
Что наблюдаете? Объясните свои наблюдения. Какие свойства меди подтверждаются этими реакциями?

8. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете? Полученный осадок нагрейте. Что произошло? Запишите уравнения реакций. Какие свойства соединений меди подтверждаются этими реакциями?

9. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор глицерина.
Какие изменения произошли? Запишите уравнения реакций. Какие свойства соединений меди доказывают эти реакции?

10. К сульфату меди(II) прилейте избыток гидроксида натрия.
Что наблюдаете?
К полученному осадку прилейте раствор глюкозы и нагрейте.
Что получилось? Запишите уравнение реакции, используя для обозначения глюкозы общую формулу альдегидов

Какое свойство соединения меди доказывает эта реакция?

11. К сульфату меди(II) прилейте: а) раствор аммиака; б) раствор фосфата натрия.
Что наблюдаете? Запишите уравнения реакций. Какие свойства соединений меди доказывают проведенные реакции?

Этап обмена информацией и подведение итогов

Учитель задает вопрос, касающийся свойств конкретного вещества. Учащиеся, выполнявшие соответствующие опыты, докладывают о проведенном эксперименте и записывают уравнения реакций на доске. Затем учитель и ученики дополняют сведения о химических свойствах вещества, которые невозможно было подтвердить реакциями в условиях школьной лаборатории.

Порядок обсуждения химических свойств соединений меди

1. Как медь реагирует с кислотами, с какими еще веществами может реагировать медь?

Записываются уравнения реакций меди с:

Концентрированной и разбавленной азотной кислотой:

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O,
3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4H 2 O;

Концентрированной серной кислотой:

Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O;

Кислородом:

2Cu + O 2 = 2CuO;

Cu + Cl 2 = CuCl 2 ;

Соляной кислотой в присутствии кислорода:

2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O;

Хлоридом железа(III):

2FeCl 3 + Cu = CuCl 2 + 2FeCl 2 .

2. Какие свойства проявляют оксид и хлорид меди(I)?

Обращается внимание на осно"вные свойства, способность к комплексообразованию, окислительно-восстановительную двойственность. Записываются уравнения реакций оксида меди(I) с:

Соляной кислотой до образования CuCl:

Cu 2 O + 2HCl = 2CuCl + H 2 O;

Избытком HCl:

CuCl + HCl = H;

Реакций восстановления и окисления Cu 2 O:

Cu 2 O + H 2 = 2Cu + H 2 O,

2Cu 2 O + O 2 = 4CuO;

Диспропорционирования при нагревании:

Cu 2 O = Cu + CuO,
2CuCl = Cu + CuCl 2 .

3. Какие свойства проявляет оксид меди(II)?

Обращается внимание на осно"вные и окислительные свойства. Записываются уравнения реакций оксида меди(II) с:

Кислотой:

CuO + 2H + = Cu 2+ + H 2 O;

Этанолом:

C 2 H 5 OH + CuO = CH 3 CHO + Cu + H 2 O;

Водородом:

CuO + H 2 = Cu + H 2 O;

Алюминием:

3CuO + 2Al = 3Cu + Al 2 O 3 .

4. Какие свойства проявляет гидроксид меди(II)?

Обращается внимание на окислительные, осно"вные свойства, способность к комплексообразованию с органическими и неорганическими соединениями. Записываются уравнения реакций с:

Альдегидом:

RCHO + 2Cu(OH) 2 = RCOOH + Cu 2 O + 2H 2 O;

Кислотой:

Cu(OH) 2 + 2H + = Cu 2+ + 2H 2 O;

Аммиаком:

Cu(OH) 2 + 4NH 3 = (OH) 2 ;

Глицерином:

Уравнение реакции разложения:

Cu(OH) 2 = CuO + H 2 O.

5. Какие свойства проявляют соли меди(II)?

Обращается внимание на реакции ионного обмена, гидролиза, окислительные свойства, комплексообразование. Записываются уравнения реакций сульфата меди с:

Гидроксидом натрия:

Cu 2+ + 2OH – = Cu(OH) 2 ;

Фосфатом натрия:

3Cu 2+ + 2= Cu 3 (PO 4) 2 ;

Cu 2+ + Zn = Cu + Zn 2+ ;

Йодидом калия:

2CuSO 4 + 4KI = 2CuI + I 2 + 2K 2 SO 4 ;

Аммиаком:

Cu 2+ + 4NH 3 = 2+ ;

и уравнения реакций:

Гидролиза:

Cu 2+ + HOH = CuOH + + H + ;

Совместного гидролиза с карбонатом натрия с образованием малахита:

2Cu 2+ + 2 + H 2 O = (CuOH) 2 CO 3 + CO 2 .

В дополнение можно рассказать учащимся о взаимодействии оксида и гидроксида меди(II) с щелочами, что доказывает их амфотерность:

Cu(OH) 2 + 2NaOH (конц.) = Na 2 ,

Cu + Cl 2 = CuCl 2 ,

Cu + HgCl 2 = CuCl 2 + Hg,

2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O,

CuO + 2HCl = CuCl 2 + H 2 O,

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O,

CuBr 2 + Cl 2 = CuCl 2 + Br 2 ,

(CuOH) 2 CO 3 + 4HCl = 2CuCl 2 + 3H 2 O + CO 2 ,

2CuCl + Cl 2 = 2CuCl 2 ,

2CuCl = CuCl 2 + Cu,

CuSO 4 + BaCl 2 = CuCl 2 + BaSO 4 .)

Упражнение 3. Составьте цепочки превращений, соответствующие следующим схемам, и осуществите их:

Задача 1. Сплав меди с алюминием обработали сначала избытком щелочи, а затем избытком разбавленной азотной кислоты. Вычислите массовые доли металлов в сплаве, если известно, что объемы газов, выделившихся в обеих реакциях (при одинаковых условиях), равны между собой
.

(Ответ . Массовая доля меди – 84%.)

Задача 2. При прокаливании 6,05 г кристаллогидрата нитрата меди(II) получено 2 г остатка. Определите формулу исходной соли .

(Ответ. Cu(NO 3) 2 3H 2 O.)

Задача 3. Медную пластинку массой 13,2 г опустили в 300 г раствора нитрата железа(III) с массовой долей соли 0,112. Когда ее вынули, оказалось, что массовая доля нитрата железа(III) стала равной массовой доле образовавшейся соли меди(II). Определите массу пластинки после того, как ее вынули из раствора .

(Ответ. 10 г.)

Домашнее задание. Выучить материал, записанный в тетради. Составить цепочку превращений по соединениям меди, содержащую не менее десяти реакций, и осуществить ее.

ЛИТЕРАТУРА

1. Пузаков С.А., Попков В.А. Пособие по химии для поступающих в вузы. Программы. Вопросы, упражнения, задачи. Образцы экзаменационных билетов. М.: Высшая школа, 1999, 575 с.
2. Кузьменко Н.Е., Еремин В.В. 2000 задач и упражнений по химии. Для школьников и абитуриентов. М.: 1-я Федеративная книготорговая компания, 1998, 512 с.

Поместите в пробирку кусочек меди и добавте 2–3 капли концентрированной серной кислоты. При необходимости подогрейте на спиртовке.

1) Какой газ образуется в результате реакции?

2) Отметьте цвет раствора и сделайте вывод: какие ионы присутствуют в растворе.

3) Составьте молекулярное уравнение и электронно–ионный баланс. (См. пример 4).

4) Какой ион является окислителем?

3.3. Взаимодействие цинка с концентрированной серной кислотой при нагревании .

Поместите в пробирку кусочек цинка и добавьте 5–6 капель концентрированной серной кислоты. Пробирку немножко подогрейте.

1)Какой газ выделяется?

Продолжайте нагревание. Почувствовали ли вы запах выделяющегося сероводорода?

    Напишите уравнения происходящих реакций между цинком и серной кислотой, отличающихся друг от друга продуктами восстановления серной кислоты: при слабом нагревании выделяется газ – диоксид серы, при более сильном нагревании – образуется сера, в условиях ещё более сильного нагрева – появляется запах сероводорода.

    Составьте электронно–ионные уравнения для этих реакций.

    Объясните разницу в действии концентрированной серной кислоты на цинк и медь, используя данные таблицы стандартных электродных потенциалов.

    В чём принципиальное отличие этих реакций от реакций взаимодействия их с разбавленной серной кислотой?

3.4. Взаимодействие металлов с концентрированной азотной кислотой.

В две пробирки поместите по кусочку меди и цинка и добавьте 2–3 капельки концентрированной азотной кислоты.

1)Какой газ выделяется?

2) Напишите молекулярное уравнение и составьте электронно–ионный баланс. (См. пример 5).

3)Исходя из значений электродных потенциалов, ответьте на вопрос, какие металлы взаимодействуют с концентрированной азотной кислотой.

3.5. Действие на металлы разбавленной азотной кислоты.

В две пробирки поместите по кусочку металлических меди и цинка. Добавьте в обе пробирки по 3–5 капель разбавленной азотной кислоты.

1)Составьте молекулярные уравнения и электронно–ионные уравнения для процессов окисления-восстановления.

ПРЕДЛАБОРАТОРНЫЙ КОНТРОЛЬ Общие химические свойства металлов и их соединений ВАРИАНТ

1.Наиболее активным восстановителем является металл:

(см. таблицу стандартных электродных потенциалов)

1) Na 2) Zn 3) К

2.При взаимодействии Cs с водой образуются:

1) CsOH 2) Сs 2 О 3) Н 2 4) Не взаимодействует.

3.Из перечисленных ниже металлов в водных растворах

щелочей растворяются:

1) А l 2) Mg 3) Li 4) Zn

4.С соляной кислотой НСl взаимодействуют металлы:

1) А1 2) Ag 3) Ti 4) Со

5.При взаимодействии Fe с концентрированной азотной

кислотой HNO 3 могут образоваться:

1) N 2 O 2) NO 3) NO 2 4) N 2

6.Высшая степень окисления ванадия V равна:

1) +2 2) +3 3) +4 4) +5 5) 0

7.Соединения марганца (IV) могут быть:

1) Только восстановителями.

2) Только окислителями,

3) И окислителями и восстановителями.

8.Наиболее сильно основные свойства выражены у оксида:

1) СгО 2) Сг 2 О 3 3) СгОз

9.Комплексное соединение К[А1(ОН) 4 ] диссоциирует как

сильный электролит, образуя ионы:

1) К + 2) А1 3+ 3) ОН – 4) [А1(ОН) 4 ]

10.В комплексном соединении NO 3

комплексообразователем является:

1) Fe 3+ 2) NH 3 3) F – 4) NO 3 –

Правильные ответы подчеркнуты.

Взаимодействие серной кислоты с металлами

Разбавленная и концентрированная серные кислоты ведут себя по-разному. Разбавленная серная кислота ведет себя, как обычная кислота. Активные металлы, стоящие в ряду напряжений левее водорода

Li, К, Ca, Na, Mg, Al, Mn, Zn, Fe, Co, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Au

вытесняют водород из разбавленной серной кислоты. Мы видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с цинком.

H 2 SO 4 + Zn = Zn SO 4 + H 2

Медь стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на медь. Как поведут себя цинк и медь в концентрированной серной кислоте?

Цинк, как активный металл, может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу, и даже сероводород.

2 H 2 SO 4 + Zn = SO 2 + ZnSO 4 + 2 H 2 O

Медь — менее активный металл. При взаимодействии с концентрированно серной кислотой восстанавливает ее до сернистого газа.

2H 2 SO 4 конц . + Cu = SO 2 + CuSO 4 + 2H 2 O

Итак, в пробирках с концентрированной серной кислотой мы наблюдаем выделение сернистого газа.

Оборудование:

Техника безопасности . Следует соблюдать правила работы с растворами кислот.

Сернистый газ ядовит, опыт следует проводить под тягой.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Гигроскопичность серной кислоты

Концентрированная серная кислота жадно набирает воду отовсюду и способна для этого даже разрушать молекулы. Древесина состоит из множества органических веществ, среди которых – целлюлоза (C 6 H 7 O 2 (OH) 3) n . Концентрированная серная кислота разрушает органические молекулы, отнимая водород и кислород – составляющие воды. Разрушение органических молекул сопровождается выделением свободного углерода. Поэтому лучинка при соприкосновении с концентрированной серной кислотой чернеет, обугливается. Кислота ведет себя, как обезвоживающий агент. Если поставить открытую емкость концентрированной серной кислотой в помещении, через некоторое время объем жидкости заметно увеличится: кислота будет притягивать влагу из воздуха.

Оборудование: химический стакан, деревянная лучинка.

Техника безопасности

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Качественная реакция на сульфит- и сульфат-ионы

Сера образует ряд кислот. Соли серной кислоты H 2 SO 4 называют сульфатами, сернистой H 2 SO 3 – сульфитами. Качественная реакция на сульфат и сульфит-ионы – реакция с растворимой солью бария. Возьмем растворы сульфата и сульфита натрия и добавим в пробирки раствор хлорида бария.

BaCl 2 + Na 2 SO 3 = BaSO 3 + 2NaCl

BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl

В двух пробирках появляются белые кристаллические осадки сульфата бария и сульфита бария. Как различить эти осадки? При добавлении раствора азотной кислоты осадок сульфита бария растворяется, а осадок сульфата бария остается без изменения.

BaSO 3 + 2HNO 3 = Ba(NO 3) 2 +SO 2 +H 2 O

Оборудование: пробирки, штатив для пробирок.

Техника безопасности . Следует соблюдать правила работы с растворами кислот. Хлорид бария – ядовитое вещество, остерегаться попадания раствора на кожу и слизистые оболочки.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Разбавление серной кислоты

Разбавление кислоты ‑ приготовление раствора меньшей концентрации. Раствор меньшей концентрации содержит большее количество воды. Однако ни в коем случае при разбавлении нельзя добавлять воду в кислоту. Существует строгое правило: лить кислоту в воду! Нарушение этого правила может привести к несчастному случаю. Дело в том, что при приготовлении растворов часто происходит их разогрев. При приготовлении растворов серной кислоты происходит сильный разогрев. В нашем опыте при добавлении небольшого количества концентрированной серной кислоты температура поднимается до 90 градусов! Представьте, что будет, если добавить воду в кислоту. Вода, попав в массу концентрированной кислоты, моментально разогреется до кипения — произойдет выброс кислоты.Особенно опасна кислота для глаз и слизистых оболочек. Поэтому правила техники безопасности при приготовлении растворов – правила сохранения жизни и здоровья. На производстве при составлении растворов мастера надевают резиновые сапоги и перчатки, резиновые фартуки и защитные очки. И всегда кислоту льют в воду, а не наоборот.

Оборудование: химические стаканы, термометр.

Техника безопасности . Следует соблюдать правила работы с концентрированными кислотами.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Распознавание растворов хлорида бария, сульфата натрия и серной кислоты (практическая работа).

Отберем в пробирки пробы растворов. Лакмус покажет нам, в какой из пробирок кислота. Лакмус стал красным во второй пробирке. Для того чтобы подтвердить наличие кислоты в этой пробирке, опустим в раствор гранулу цинка. Выделяется газ. Во второй пробирке – серная кислота. Оставшиеся два раствора испытаем хлоридом бария. В пробирке с сульфатом натрия должен появиться белый осадок сульфата бария.

Na 2 SO 4 + BaCl 2 = 2 NaCl + BaSO 4 ↓

В колбе номер один находится сульфат натрия. В последней пробирке должен быть хлорид бария. Убедимся в этом с помощью серной кислоты. Серная кислота с хлоридом бария дает белый осадок сульфата бария.

H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2 HCl

В колбе номер три – хлорид бария.

Оборудование: пробирки, штатив для пробирок, колбы, пинцет, пипетки.

Техника безопасности . Соблюдать правила работы с кислотами. Хлорид бария – ядовитое вещество, остерегаться попадания раствора на кожу и слизистые оболочки.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Реакция серной кислоты с органическими веществами

Концентрированная серная кислота H 2 SO 4 жадно поглощает воду и способна даже разрушать молекулы, чтобы «достать» воду из органических соединений. Возьмем сахар – это органическое вещество сахароза. C 12 H 22 O 11. Молекула сахарозы состоит из атомов углерода, водорода и кислорода. Добавим в сахарную пудру воды и прильем концентрированную серную кислоту. Через несколько секунд начинается бурная реакция.

Выделяется уголь и газы: сернистый SO 2 и углекислый CO 2 . Газы вспучивают смесь, и она поднимается в стакане. Кислота ведет себя, как дегидратирующий агент – вещество, отбирающее воду из соединений, и как окислитель.

Оборудование: химические стаканы, пипетка, мензурка, дистиллированная вода.

Техника безопасности . Следует соблюдать правила работы с растворами кислот. Выделяющиеся газы ядовиты, опыт следует проводить под тягой.

Постановка опыта – Елена Махиненко, текст – к.п.н. Павел Беспалов.

Действие концентрированной серной кислоты на бумагу

Очистка газов с помощью серной кислоты

В основе химических свойств большинства элементов лежит их способность к растворению в водной среде и кислотах. Изучение характеристики меди связано с малоактивным действием в обычных условиях. Особенностью её химических процессов является образование соединений с аммиаком, ртутью, азотной и Низкая растворимость меди в воде не способна вызвать коррозионные процессы. Ей присущи особые химические свойства, позволяющие использовать соединение в разных отраслях промышленности.

Описание элемента

Медь считается старейшим из металлов, который научились добывать люди ещё до нашей эры. Это вещество получают из природных источников в виде руды. Медью называют элемент химической таблицы с латинским наименованием cuprum, порядковый номер которого равен 29. В периодической системе он расположен в четвёртом периоде и относится к первой группе.

Природное вещество является розово-красным тяжёлым металлом с мягкой и ковкой структурой. Температура его кипения и плавления - более 1000 °С. Считается хорошим проводником.

Химическое строение и свойства

Если изучить электронную формулу медного атома, то можно обнаружить, что у него имеется 4 уровня. На валентной 4s-орбитали находится всего один электрон. Во время химических реакций от атома может отщепляться от 1 до 3 отрицательно заряжённых частиц, тогда получаются соединения меди со степенью окисления +3, +2, +1. Наибольшей устойчивостью обладают её двухвалентные производные.

В химических реакциях она выступает в качестве малоактивного металла. В обычных условиях растворимость меди в воде отсутствует. В сухом воздухе не наблюдается коррозия, зато при нагревании поверхность металла покрывается чёрным налётом из оксида двухвалентного. Химическая устойчивость меди проявляется при действии безводных газов, углерода, ряда органических соединений, фенольных смол и спиртов. Для неё характерны реакции комплексообразования с выделением окрашенных соединений. Медь обладает небольшим сходством с металлами щелочной группы, связанным с формированием производных одновалентного ряда.

Что такое растворимость?

Это процесс образования однородных систем в виде растворов при взаимодействии одного соединения с другими веществами. Их составляющими являются отдельные молекулы, атомы, ионы и другие частицы. Степень растворимости определяется по концентрации вещества, которое растворили при получении насыщенного раствора.

Единицей измерения чаще всего являются проценты, объёмные или весовые доли. Растворимость меди в воде, как и других соединений твёрдого вида, подчиняется лишь изменениям температурных условий. Эту зависимость выражают с помощью кривых. Если показатель очень маленький, то вещество считается нерастворимым.

Растворимость меди в водной среде

Металл проявляет коррозионную стойкость под действием морской воды. Это доказывает его инертность в обычных условиях. Растворимость меди в воде (пресной) практически не наблюдается. Зато во влажной среде и под действием углекислого газа на металлической поверхности происходит образование плёнки зелёного цвета, которая является основным карбонатом:

Cu + Cu + O 2 + H 2 O + CO 2 → Cu(OH) 2 · CuCO 2 .

Если рассматривать её одновалентные соединения в виде соли, то наблюдается их незначительное растворение. Такие вещества подвержены быстрому окислению. В результате получаются соединения меди двухвалентные. Эти соли обладают хорошей растворимостью в водной среде. Происходит их полная диссоциация на ионы.

Растворимость в кислотах

Обычные условия протекания реакций меди со слабыми или разбавленными кислотами не способствуют их взаимодействию. Не наблюдается металла со щелочами. Растворимость меди в кислотах возможна, если они являются сильными окислителями. Только в этом случае протекает взаимодействие.

Растворимость меди в азотной кислоте

Такая реакция возможна ввиду того, что происходит процесс окисления металла сильным реагентом. Кислота азотная в разбавленном и концентрированном виде проявляет окислительные свойства с растворением меди.

В первом варианте во время реакции получается меди нитрат и азота двухвалентный оксид в соотношении 75 % к 25 %. Процесс с разбавленной кислотой азотной можно описать следующим уравнением:

8HNO 3 + 3Cu → 3Cu(NO 3) 2 + NO + NO + 4H 2 O.

Во втором случае получается меди нитрат и азота оксиды двухвалентные и четырёхвалентные, соотношение которых 1 к 1. В этом процессе участвует 1 моль металла и 3 моля кислоты азотной концентрированной. При растворении меди происходит сильный разогрев раствора, в результате чего наблюдается термическое разложение окислителя и выделение дополнительного объёма азотных оксидов:

4HNO 3 + Cu → Cu(NO 3) 2 + NO 2 + NO 2 + 2H 2 O.

Реакцию используют в малотоннажном производстве, связанном с переработкой лома или удалением покрытия с отходов. Однако такой способ растворения меди имеет ряд недостатков, связанных с выделением большого количества азотных оксидов. Для их улавливания или нейтрализации необходимо специальное оборудование. Процессы эти весьма затратные.

Растворение меди считается завершённым, когда происходит полное прекращение выработки летучих азотистых оксидов. Температура реакции колеблется от 60 до 70 °C. Следующим этапом является спуск раствора из На его дне остаются небольшие куски металла, который не прореагировал. К полученной жидкости добавляют воду и проводят фильтрацию.

Растворимость в кислоте серной

В обычном состоянии такая реакция не протекает. Фактором, определяющим растворение меди в серной кислоте, является её сильная концентрация. Разбавленная среда не может окислить металл. Растворение меди в серной кислоте концентрированной протекает с выделением сульфата.

Процесс выражается следующим уравнением:

Cu + H 2 SO 4 + H 2 SO 4 → CuSO 4 + 2H 2 O + SO 2 .

Свойства сульфата меди

Соль двухосновную ещё называют сернокислой, обозначают её так: CuSO 4 . Она представляет собой вещество без характерного запаха, не проявляющее летучесть. В безводной форме соль не имеет цвета, она непрозрачная, обладающая высокой гигроскопичностью. У меди (сульфат) растворимость хорошая. Молекулы воды, присоединяясь к соли, могут образовывать кристаллогидратные соединения. Примером служит который является пентагидратом голубого цвета. Его формула: CuSO 4 ·5H 2 O.

Кристаллогидратам присуща прозрачная структура синеватого оттенка, они проявляют горьковатый, металлический привкус. Молекулы их способны со временем терять связанную воду. В природе встречаются в виде минералов, к которым относят халькантит и бутит.

Подвержен воздействию меди сульфат. Растворимость является реакцией экзотермической. В процессе гидратации соли выделяется значительное количество тепла.

Растворимость меди в железе

В результате этого процесса образуются псевдосплавы из Fe и Cu. Для металлического железа и меди возможна ограниченная взаимная растворимость. Максимальные её значения наблюдаются при температурном показателе 1099,85 °C. Степень растворимости меди в твёрдой форме железа равняется 8,5 %. Это небольшие показатели. Растворение металлического железа в твёрдой форме меди составляет около 4,2 %.

Снижение температуры до комнатных значений делает взаимные процессы незначительными. При расплавлении металлической меди, она способна хорошо смачивать железо в твёрдой форме. При получении псевдосплавов Fe и Cu используют особые заготовки. Их создают путём прессования или печения железного порошка, находящегося в чистой или легированной форме. Такие заготовки пропитывают жидкой медью, образуя псевдосплавы.

Растворение в аммиаке

Процесс часто протекает при пропускании NH 3 в газообразной форме над раскалённым металлом. Результатом является растворение меди в аммиаке, выделение Cu 3 N. Это соединение называют нитридом одновалентным.

Соли её подвергаются воздействию раствора аммиачного. Прибавление такого реактива к медному хлориду приводит к выпадению осадка в виде гидроксида:

CuCl 2 + NH 3 + NH 3 + 2H 2 O → 2NH 4 Cl + Cu(OH) 2 ↓.

Аммиачный избыток способствует формированию соединения комплексного типа, имеющего окраску тёмно-синюю:

Cu(OH) 2 ↓+ 4NH 3 → (OH) 2 .

Этот процесс используют для определения ионов двухвалентной меди.

Растворимость в чугуне

В структуре ковкого перлитного чугуна помимо основных компонентов присутствует дополнительный элемент в виде обычной меди. Именно она повышает графитизацию углеродных атомов, способствует увеличению жидкотекучести, прочности и твёрдости сплавов. Металл положительно влияет на уровень перлита в конечном продукте. Растворимость меди в чугуне используют для проведения легирования исходного состава. Основной целью такого процесса является получение ковкого сплава. У него будут повышенные механические и коррозионные свойства, но уменьшено охрупчивание.

Если содержание меди в чугуне составляет около 1 %, то показатель прочности при проведении растяжения приравнивается к 40 %, а текучести увеличивается до 50 %. Это существенно изменяет характеристики сплава. Повышение количества металла, легирующего до 2 %, приводит к изменению прочности до значения 65 %, а показатель текучести становится равен 70 %. При большем содержании меди в составе чугуна труднее образуется шаровидный графит. Введение в структуру легирующего элемента не изменяет технологию формирования вязкого и мягкого сплава. Время, которое отводится для отжига, совпадает с продолжительностью такой реакции при без примеси меди. Оно составляет около 10 часов.

Использование меди для изготовления чугуна с высокой концентрацией кремния не способно полностью устранить так называемое ожелезнение смеси во время отжига. В результате получают продукт с низкой упругостью.

Растворимость в ртути

При смешивании ртути с металлами других элементов получаются амальгамы. Этот процесс может проходить при комнатной температуре, ведь в таких условиях Pb представляет собой жидкость. Растворимость меди в ртути проходит только во время нагревания. Металл необходимо предварительно измельчить. При смачивании жидкой ртутью твёрдой меди происходит взаимное проникновение одного вещества в другое или процесс диффундирования. Значение растворимости выражается в процентах и составляет 7,4*10 -3 . В процессе реакции получается твёрдая простая амальгама, похожая на цемент. Если её немного нагреть, то она размягчается. В результате такую смесь используют для починки изделий из фарфора. Существуют ещё и сложные амальгамы с оптимальным содержанием в ней металлов. Например, в стоматологическом сплаве присутствуют элементы серебра, олова, меди и цинка. Их количество в процентах относится как 65: 27: 6:2. Амальгам с таким составом называется серебряным. Каждый компонент сплава выполняет определённую функцию, которая позволяет получить пломбу высокого качества.

Другим примером служит сплав амальгамный, в котором наблюдается высокое содержание меди. Его ещё называют медным сплавом. В составе амальгама присутствует от 10 до 30 % Cu. Высокое содержание меди препятствует взаимодействию олова со ртутью, что не позволяет образовываться очень слабой и коррозирующей фазе сплава. Кроме того, уменьшение количества в пломбе серебра приводит к удешевлению. Для приготовления амальгамы желательно использовать инертную атмосферу или защитную жидкость, которая образует плёнку. Металлы, входящие в состав сплава способны быстро окисляться воздухом. Процесс нагревания амальгамы купрума в присутствие водорода приводит к отгонке ртути, что позволяет отделить элементарную медь. Как видите, эта тема несложна для изучения. Теперь вы знаете, как медь взаимодействует не только с водой, но и с кислотами и другими элементами.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то