Основные функции анализаторов. Зрительная система Запись суммарной электрической активности фоторецепторов сетчатки называют

Мозг через орган зрения получает более 90% сенсорной информации. Фоторецепторы сетчатки глаза из всего спектра электромагнитных излучений регистрируют только волны длиной от 400 до 800 нм. Физиологическая роль глаза как органа зрения двояка. Во-первых, это оптический инструмент, собирающий свет от объектов внешней среды и проецирующий их изображения на сетчатку. Во-вторых, фоторецепторы сетчатки преобразуют оптические изображения в нервные сигналы, передаваемые в зрительную кору.

Орган зрения (рис. 10-1) включает глазное яблоко, соединённое через зрительный нерв с мозгом, защитный аппарат (в том числе веки и слёзные железы) и аппарат движения (поперечнополосатые глазодвигательные мышцы). Глазное яблоко. Стенка глазного яблока образована оболочками: в передней части расположены конъюнктива и роговица, в задней - сетчатка, сосудистая оболочка и склера. Полость глазного яблока занимает стекловидное тело. Кпереди от стекловидного тела расположен двояковыпуклый хрусталик. Между роговицей и хрусталиком находятся содержащие

Рис.10-1. Глазное яблоко. На врезке - зрачковый рефлекс

водянистую влагу перeдняя камера (между задней поверхностью роговицы и радужкой со зрачком) и задняя камера глаза (между радужкой и хрусталиком).

Защитный аппарат глаза. Длинные ресницы верхнего века предохраняют глаз от попадания пыли; мигательный рефлекс (моргание) осуществляется автоматически. Веки содержат мейбомиевы железы, благодаря которым края век всегда увлажнены. Конъюнктива - тонкая слизистая оболочка - выстилает как внутреннюю поверхность век, так и наружную поверхность глазного яблока. Слёзная железа выделяет слёзную жидкость, которая орошает конъюнктиву.

Сетчатка

Схема зрительного отдела сетчатки представлена на рис. 10-2. У заднего края оптической оси глаза сетчатка имеет округлое жёл- тое пятно диаметром около 2 мм (рис. 10-2, врезка). Центральная ямка - углубление в средней части жёлтого пятна - место наилучшего восприятия. Зрительный нерв выходит из сетчатки медиальнее жёлтого пятна. Здесь образуется диск зрительного нерва (слепое пятно), не воспринимающего свет. В центре диска имеется углубление, в котором видны питающие сетчатку сосуды. В зрительной сетчатке, начиная от самого наружного - пигментного (препятствует отражению и рассеиванию прошедшего через всю толщу сетчатки света, см. стрелку на рис. 10-2) и до самого внутреннего - слоя нервных волокон (аксонов ганглиозных нейронов) зрительного нерва, выделяют следующие слои.

Наружный ядерный слой содержит ядросодержащие части фоторецепторных клеток - колбочек и палочек. Колбочки концентрируются в области жёлтого пятна. Глазное яблоко организовано таким образом, что именно на колбочки падает центральная часть светового пятна от визуализируемого объекта. По периферии от жёлтого пятна расположены палочки.

Наружный сетчатый. Здесь осуществляются контакты внутренних сегментов палочек и колбочек с дендритами биполярных клеток.

Внутренний ядерный. Здесь располагаются биполярные клетки, связывающие палочки и колбочки с ганглиозными клетками, а также горизонтальные и амакринные клетки.

Внутренний сетчатый. В нём биполярные клетки контактируют с ганглиозными клетками, а амакринные клетки выступают в качестве вставочных нейронов.

Ганглиозный слой содержит тела ганглиозных нейронов.

Рис. 10-2 . Сетчатка (Б - биполярные клетки; Г - ганглиозные клетки; гор - горизонтальные клетки; A - амакринные клетки). На врезке - глазное дно

Общая схема передачи информации в сетчатке такова: рецепторная клетка биполярная клетка ганглиозная клетка и одновременно амакринная клетка - ганглиозная клетка аксоны ганглиозных клеток. Зрительный нерв выходит из глаза в области, видимой в офтальмоскоп как диск зрительного нерва (рис. 10-2, врезка). Фоторецепторные клетки (рис. 10-3 и 10-5В) - палочки и колбочки. Периферические отростки фоторецепторных клеток состоят из наружного и внутреннего сегментов, соединённых ресничкой.

Наружный сегмент имеет множество уплощённых замкнутых дисков (дупликатуры клеточных мембран), содержащих зрительные пигменты: родопсин (максимум поглощения - 505 нм) - в палочках: красный (570 нм), зелёный (535 нм) и синий (445 нм) пигменты - в колбочках. Наружный сегмент палочек и колбочек состоит из регулярных мембранных образований - дисков (рис. 10-3, справа). В каждом фоторецепторе имеется более 1000 дисков.

Внутренний сегмент заполнен митохондриями и содержит базальное тельце, от которого в наружный сегмент отходит 9 пар микротрубочек.

Центральное зрение, а также острота зрения реализуются колбочками.

Периферическое зрение, а также ночное зрение и восприятие подвижных объектов - функции палочек.

ОПТИКА ГЛАЗА

Глаз имеет систему линз с различной кривизной и различными показателями преломления световых лучей (рис. 10-4,1), включаю-

Рис.10-3. Фоторецепторы сетчатки. Наружные сегменты заключены в прямоугольник

щую четыре преломляющих среды между: О воздухом и передней поверхностью роговицы; О задней поверхностью роговицы и водянистой влагой передней камеры; О водянистой влагой передней камеры и хрусталиком; О задней поверхностью хрусталика и стекловидным телом.

Преломляющая сила. Для практических расчетов преломляющей силы глаза используют понятие о так называемом «редуцированном глазе», когда все преломляющие поверхности алгебраически складываются и рассматриваются как одна линза. В таком редуцированном глазу с единственной преломляющей поверхностью, центральная точка которой располагается на 17 мм кпереди от сетчатки, общая сила преломления составляет 59 диоптрий, когда хрусталик приспособлен для рассматривания далеких предметов. Преломляющая сила любых оптических систем выражается в диоптриях (D): 1 диоптрия равна преломляющей силе линзы с фокусным расстоянием в 1 метр.

Аккомодация - приспособление глаза к чёткому видению предметов, расположенных на различном расстоянии. Основная роль в процессе аккомодации принадлежит хрусталику, способному изменять свою кривизну. У молодых людей преломляющая сила хрусталика может увеличиваться от 20 до 34 диоптрий. При этом хрусталик изменяет форму от умеренно выпуклой до значительно выпуклой. Механизм аккомодации иллюстрирован на рис. 10-4,II.

Рис.10-4. ОПТИКА ГЛАЗА. I Глаз как оптическая система. II Механизм аккомодации. А - удалённый объект. Б - близкорасположенный объект. III Рефракция. IV Поля зрения. Прерывистой линией очерчено поле зрения левого глаза, сплошной линией - поле зрения правого глаза. Светлая (сердцевидная) область в центре - зона бинокулярного зрения. Окрашенные области слева и справа - поля монокулярного зрения)

При взгляде на удалённые предметы (А) ресничные мышцы расслабляются, поддерживающая связка растягивает и уплощает хрусталик, придавая ему дискообразную форму. При взгляде на близкие предметы (Б) для полной фокусировки необходима более значительная кривизна хрусталика, поэтому ГМК ресничного тела сокращаются, связки расслабляются, а хрусталик в силу своей эластичности становится более выпуклым. Острота зрения - точность, с которой виден объект; теоретически объект должен быть такого размера, чтобы мог простимулировать одну палочку или колбочку. Оба глаза действуют вместе (бинокулярное зрение) для передачи зрительной информации в зрительные центры коры больших полушарий, где зрительный образ оценивается в трёх измерениях.

Зрачковый рефлекс. Зрачок - круглое отверстие в радужной оболочке - очень быстро меняется в размере в зависимости от количества света, падающего на сетчатку. Просвет зрачка может изменяться от 1 мм до 8 мм. Это придаёт зрачку свойства диафрагмы. Сетчатка очень чувствительна к свету (рис. 10-1, врезка), слишком большое количество света (А) искажает цвета и раздражает глаз. Изменяя просвет, зрачок регулирует количество света, попадающего в глаз. Яркий свет вызывает безусловнорефлекторную вегетативную реакцию, замыкающуюся в среднем мозге: сфинктер зрачка (1) в радужной оболочке обоих глаз сокращается, а дилататор зрачка (2) расслабляется, в результате диаметр зрачка уменьшается. Плохое освещение (Б) заставляет оба зрачка расшириться, чтобы достаточное количество света могло достичь сетчатки и возбудить фоторецепторы.

Содружественная реакция зрачков. У здоровых людей зрачки обоих глаз одинакового размера. Освещение одного глаза ведет к сужению зрачка и другого глаза. Такая реакция называется содружественной реакцией зрачков. При некоторых заболеваниях размеры зрачков обоих глаз различны (анизокория).

Глубина фокуса. Зрачок усиливает чёткость изображения на сетчатке за счёт увеличения глубины резкости. При ярком свете зрачок имеет диаметр 1,8 мм, при средней дневной освещённос- ти - 2,4 мм, в темноте расширение зрачка максимально - 7,5 мм. Расширение зрачка в темноте ухудшает качество изображения на сетчатке. Между диаметром зрачка и интенсивностью освещения имеется логарифмическая зависимость. Максимальное увеличение диаметра зрачка увеличивает его площадь в 17 раз. Во столько же раз возрастает световой поток, поступающий к сетчатке.

Контроль фокусировки. Аккомодация хрусталика регулируется механизмом отрицательной обратной связи, автоматически приспосабливая фокусную силу хрусталика для наивысшей остроты зрения. Когда глаза фиксированы на отдалённом объекте и должны немедленно изменить фиксацию на ближний предмет, то в течение долей секунды происходит аккомодация хрусталика, обеспечивающая лучшую остроту зрения. При неожиданном изменении точки фиксации хрусталик всегда изменяет свою преломляющую силу в нужном направлении. Помимо вегетативной иннервации радужки (зрачковый рефлекс), для контроля фокусировки важны следующие моменты.

❖ Хроматическая аберрация. Лучи красного цвета фокусируются позже голубого, поскольку хрусталик преломляет голубые лучи

сильнее, чем красные. У глаз появляется возможность определять, какой из этих двух типов лучей находится в лучшем фокусе и посылать информацию к аккомодационному механизму с указанием делать хрусталик сильнее или слабее.

Сферическая аберрация. Пропуская только центральные лучи, зрачок устраняет сферическую аберрацию.

Конвергенция глаз при фиксации на близком предмете. Нервный механизм, вызывающий конвергенцию, одновременно сигнализирует об увеличении преломляющей силы хрусталика.

Степень аккомодации хрусталика постоянно, но незначительно колеблется дважды в секунду, что способствует более быстрому реагированию хрусталика для установки фокуса. Зрительный образ становится более чётким, когда осцилляции хрусталика усиливают изменения в нужном направлении; чёткость уменьшается, когда сила хрусталика изменяется в ненужном направлении.

Области мозговой коры, управляющие аккомодацией, взаимодействуют с нервными структурами, контролирующими фиксацию глаз на движущемся предмете. Окончательная интеграция зрительных сигналов осуществляется в полях 18 и 19 по Бродманну, затем двигательные сигналы передаются к ресничной мышце через мозговой ствол и ядра Эдингера-Вестфаля.

Точка ближайшего видения - способность ясно видеть в фокусе близлежащий предмет - отдаляется в течение жизни. В десятилетнем возрасте она приблизительно равняется 9-10 см и отдаляется до 83 см в возрасте 60 лет. Эта регрессия точки ближайшего видения возникает в результате уменьшения эластичности хрусталика и потери аккомодации.

Пресбиопия. Когда человек становится старше, хрусталик разрастается, становится толще и менее эластичным. Способность хрусталика изменять свою форму также уменьшается. Сила аккомодации падает с 14 диоптрий у ребенка до менее 2 диоптрий у человека в возрасте от 45 до 50 лет и до 0-в возрасте 70 лет. Таким образом, хрусталик утрачивает способность аккомодации, и это состояние называется пресбиопией (старческая дальнозоркость). Когда человек достигает состояния пресбиопии, каждый глаз остаётся с постоянным фокусным расстоянием; это расстояние зависит от физических характеристик глаз каждого отдельного человека. Поэтому пожилые люди вынуждены пользоваться очками с двояковыпуклыми линзами.

Аномалии рефракции. Эмметропия (нормальное зрение, рис. 10-4,III) соответствует нормальному глазу, если параллельные лучи от от- далённых предметов фокусируются на сетчатке, когда ресничная

мышца полностью расслаблена. Это значит, что эмметропический глаз может видеть все отдалённые объекты очень ясно и легко переходить (посредством аккомодации) на ясное видение близлежащих предметов.

Гиперметропия (дальнозоркость) может быть обусловлена слишком коротким глазным яблоком или в более редких случаях тем, что глаз имеет слишком малоэластичный хрусталик. В дальнозорком глазу продольная ось глаза короче, и луч от отдалён- ных предметов фокусируется за сетчаткой (рис. 10-4,III). Этот недостаток рефракции компенсируется дальнозорким человеком аккомодационным усилием. Дальнозоркий человек напрягает аккомодационную мышцу, рассматривая далёкие объекты. Попытки рассматривать близкие предметы вызывают чрезмерное напряжение аккомодации. Для работы с близкорасположенными предметами и чтения дальнозоркие люди должны пользоваться очками с двояковыпуклыми линзами.

Миопия (близорукость) представляет тот случай, когда ресничная мышца полностью расслаблена, и лучи света от далекого объекта фокусируются впереди сетчатки (рис. 10-4,III). Близорукость возникает либо вследствие слишком длинного глазного яблока, либо в результате большой преломляющей силы хрусталика глаза. Не существует механизма, посредством которого глаз смог бы уменьшить преломляющую силу хрусталика в условиях полностью расслабленной ресничной мышцы. Однако если объект находится рядом с глазами, то близорукий человек может использовать механизм аккомодации для чёт- кого фокусирования объекта на сетчатке. Следовательно, близорукий человек имеет ограничения только в отношении ясной точки «дальнего видения». Для ясного видения вдаль близорукому человеку необходимо использовать очки с двояковогнутыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, вызванное различной кривизной сферической поверхности роговицы. Аккомодация глаза не в силах преодолеть астигматизм, потому что кривизна хрусталика при аккомодации изменяется одинаково. Для компенсации недостатков рефракции роговицы применяют специальные цилиндрические линзы.

Зрительное поле и бинокулярное зрение

Зрительное поле каждого глаза - часть внешнего пространства, видимого глазом. Теоретически оно должно быть круглым, но в действительности оно срезано в медиальном направлении носом и верхним краем глазницы! (рис. 10-4,IV). Составление карты

зрительного поля важно для неврологической и офтальмологической диагностики. Окружность зрительного поля определяют с помощью периметра. Один глаз закрывается, а другой фиксируется на центральной точке. Передвигая по меридианам в направлении к центру небольшую мишень, отмечают точки, когда мишень становится видимой, описывая таким образом зрительное поле. На рис. 10-4,IV центральные зрительные поля очерчены по касательной линии сплошными и пунктирными линиями. Белые участки за пределами линий являются слепым пятном (физиологическая скотома).

Бинокулярное зрение. Центральная часть зрительных полей двух глаз полностью совпадает; следовательно, любой участок в этом зрительном поле охватывается бинокулярным зрением. Импульсы, идущие от двух сетчаток, возбуждённых световыми лучами от объекта, на уровне зрительной коры сливаются в один образ. Точки на сетчатке обоих глаз, куда должно попадать изображение, чтобы оно воспринималось бинокулярно как единый предмет, называются корреспондирующими точками. Легкое надавливание на один глаз вызывает двоение в глазах вследствие нарушения соответствия сетчаток.

Глубина зрения. Бинокулярное зрение играет важную роль в определении глубины зрения, основываясь на относительных размерах объектов, их отражениях, их движении относительно друг друга. На самом деле глубина восприятия является также компонентом монокулярного зрения, но бинокулярное зрение добавляет чёткость и пропорциональность восприятия глубины.

ФУНКЦИИ СЕТЧАТКИ

Фоторецепция

В состав дисков фоторецепторных клеток входят зрительные пигменты, в том числе родопсин палочек. Родопсин (рис. 10-5А) состоит из белковой части (опсин) и хромофора - 11-цис-ретиналя, под действием фотонов переходящего в транс -ретиналь (фотоизомеризация). При попадании квантов света на наружные сегменты в фоторецепторных клетках последовательно происходят следующие события (рис. 10-5Б): активация родопсина в результате фотоизомеризации - каталитическая активация G-белка (G t , трансдуцин) родопсином - активация фосфодиэстеразы при связывании с G t a - гидролиз цГМФ цГМФ-фосфодиэстеразой - переход цГМФ-зависимых Na+-каналов из открытого состояния в закрытое - гиперполяризация плазмолеммы фоторецепторной клетки - передача сигнала на биполярные клетки.

Рис. 10-5. РОДОПСИН И АКТИВАЦИЯ ИОННЫХ КАНАЛОВ . А. Молекула опсина содержит 7 трансмембранных альфа-спиральных участков. Зачернённые кружки соответствуют локализации наиболее распрост- ранённых молекулярных дефектов. Так, при одной из мутаций глицин во втором трансмембранном участке в 90-м положении заменён на аспарагин, что приводит к врождённой ночной слепоте. Б. Трансмембранный белок родопсин и его связь с G-белком (трансдуцин) в плазмолемме фоторецепторной клетки. Возбуждённый фотонами родопсин активирует G-белок. При этом гуанозиндифосфат, связанный с α-СЕ G-белка, заменяется на ГТФ. Отщеплённые α-СЕ и β-СЕ действуют на фосфодиэстеразу и заставляют её превращать цГМФ в гуанозинмонофосфат. Это закрывает Na+-каналы, и ионы Na+ не могут попасть в клетку, что приводит к её гиперполяризации. R - родопсин; α, β и γ - СЕ G-белка; A - агонист (в данном случае кванты света); E - фермент-эффектор фосфодиэстераза. В. Схема палочки. В наружном сегменте расположена стопка дисков, содержащих зрительный пигмент родопсин. Мембрана дисков и клеточная мембрана разобщены. Свет (hv) активирует родопсин (Rh*) в дисках, что закрывает?+-каналы в клеточной мембране и снижает вход Na+ в клетку

Ионные основы фоторецепторных потенциалов

❖ В темноте Na +-каналы мембраны наружных сегментов палочек и колбочек открыты, и ток течёт из цитоплазмы внутренних сегментов в мембраны наружных сегментов (рис. 10-5В и 10- 6,I). Ток течёт также в синаптическое окончание фоторецептора, вызывая постоянное выделение нейромедиатора. Na+,K+-

Рис.10-6. ЭЛЕКТРИЧЕСКИЕ РЕАКЦИИ СЕТЧАТКИ. I. Ответ фоторецептора на освещение. II. Ответы ганглиозных клеток. Освещенные поля показаны белым. III. Локальные потенциалы клеток сетчатки. П - палочки; ГК - горизонтальные клетки; Б - биполярные клетки; AК - амакринные клетки; Г - ганглиозные клетки

насос, находящийся во внутреннем сегменте, поддерживает ионное равновесие, компенсируя выход Na+ входом K+. Таким образом, в темноте ионные каналы поддерживаются в открытом состоянии и потоки внутрь клетки Na+ и Ca 2 + через открытые каналы обеспечивают появление тока (темновой ток). О На свету, т.е. когда свет возбуждает наружный сегмент, Na + -каналы закрываются и возникает гиперполяризационный рецепторный потенциал. Этот потенциал, появившийся на мембране наружного сегмента, распространяется до синаптического окончания фоторецептора и уменьшает выделение синаптического медиатора - глутамата. Это немедленно приводит к появлению ПД в аксонах ганглиозных клетках. Таким обра-

зом, гиперполяризация плазмолеммы - следствие закрытия ионных каналов.

О Возврат к исходному состоянию. Свет, вызывающий каскад реакций, понижающих концентрацию внутриклеточного цГМФ и приводящих к закрытию натриевых каналов, уменьшает содержание в фоторецепторе не только Na+, но и Ca 2 +. В результате понижения концентрации Ca 2 + активируется фермент гуанилатциклаза, синтезирующая цГМФ, и в клетке растёт содержание цГМФ. Это приводит к торможению функций активированной светом фосфодиэстеразы. Оба этих процесса - повышение содержания цГМФ и торможение активности фосфодиэстеразы - возвращают фоторецептор в исходное состояние и открывают Na+-каналы.

Световая и темновая адаптация

Световая адаптация. Если человек длительное время находится в условиях яркого освещения, то в палочках и колбочках происходит превращение значительной части зрительных пигментов в ретиналь и опсин. Большая часть ретиналя превращается в витамин A. Всё это приводит к соответствующему снижению чувствительности глаза, называемому световой адаптацией.

Темновая адаптация. Напротив, если человек остаётся в темноте продолжительное время, то витамин A вновь превращается в ретиналь, ретиналь и опсин формируют зрительные пигменты. Всё это приводит к повышению чувствительности глаза - темновой адаптации.

Электрические ответы сетчатки

Различные клетки сетчатки (фоторецепторы, биполярные, горизонтальные, амакринные, а также дендритная зона ганглиозных нейронов) генерируют локальные потенциалы, но не ПД (рис. 10-6). Из всех клеток сетчатки ПД возникают только в аксонах ганглиозных клеток. Суммарные электрические потенциалы сетчатки - электроретинограмма (ЭРГ). ЭРГ регистрируют так: один электрод накладывают на поверхность роговицы, другой - на кожу лица. ЭРГ имеет несколько волн, связанных с возбуждением различных структур сетчатки и суммарно отражает интенсивность и длительность действия света. Данные ЭРГ могут использоваться в диагностических целях при заболеваниях сетчатки

Нейромедиаторы. Нейроны сетчатки синтезируют ацетилхолин, дофамин, Z-глутаминовую кислоту, глицин, γ-аминомасляную кислоту (ГАМК). Некоторые нейроны содержат серотонин, его аналоги (индоламины) и нейропептиды. Палочки и колбочки в

синапсах с биполярными клетками секретируют глутамат. Разные амакринные клетки выделяют ГАМК, глицин, дофамин, ацетилхолин и индоламин, оказывающие тормозные эффекты. Нейромедиаторы для биполярных и горизонтальных не идентифицированы.

Локальные потенциалы . Ответы палочек, колбочек и горизонтальных клеток являются гиперполяризующими (рис. 10-6,II), ответы биполярных клеток либо гиперполяризующие, либо деполяризующие. Амакринные клетки создают деполяризующие потенциалы.

Функциональные особенности клеток сетчатки

Зрительные образы. Сетчатка вовлечена в формирование трёх зрительных образов. Первый образ формируется под действием света на уровне фоторецепторов, превращается во второй образ на уровне биполярных клеток, в ганглиозных нейронах формируется третий образ. В формировании второго образа принимают также участие горизонтальные клетки, а в образовании третьего задействованы амакринные клетки.

Латеральное торможение - способ усиления зрительного контраста. Латеральное торможение - важнейший элемент деятельности сенсорных систем, позволяющий в сетчатке усиливать явления контраста. В сетчатке латеральное торможение отмечается во всех нейронных слоях, но для горизонтальных клеток оно является их основной функцией. Горизонтальные клетки латерально синаптически связаны с синаптическими участками палочек и колбочек и с дендритами биполярных клеток. В окончаниях горизонтальных клеток выделяется медиатор, который всегда оказывает тормозное влияние. Таким образом, латеральные контакты горизонтальных клеток обеспечивают возникновение латерального торможения и передачу правильного зрительного паттерна в мозг.

Рецептивные поля. В сетчатке на 100 млн палочек и 3 млн колбочек приходится около 1,6 млн ганглиозных клеток. В среднем на одну ганглиозную клетку конвергирует 60 палочек и 2 колбочки. Существуют большие различия между периферическими и центральными отделами сетчатки в количестве палочек и колбочек, конвергирующих на ганглиозные нейроны. На периферии сетчатки фоторецепторы, связанные с одной ганглиозной клеткой, образуют её рецептивное поле. Перекрытие рецептивных полей различных ганглиозных клеток позволяет повышать световую чувствительность при низком пространственном разрешении. По мере приближения к центральной ямке соотношение палочек и

Колбочек с ганглиозными клетками становится более упорядоченным, и на каждое нервное волокно приходится всего лишь несколько палочек и колбочек. В области центральной ямки остаются только колбочки (около 35 тыс.), и количество волокон зрительного нерва, выходящих из этой области, равно количеству колбочек. Это создаёт высокую степень остроты зрения по сравнению с относительно слабой остротой зрения на периферии сетчатки. На рис. 10-6,II показаны: слева - диаграммы рецептивных полей, освещённых по центру и по периферии круга, справа - диаграммы частоты ПД, возникающих в аксонах ганглиозных нервных клетках в ответ на освещение. При центральном освещении возбуждённое рецептивное поле вызывает латеральное торможение по периферии: на верхнем рисунке справа частота импульсов в центре намного больше, чем по краям. При засветке рецептивного поля по краям круга импульсация имеется по периферии и отсутствует в центре. Ганглиозные клетки разных типов. Ганглиозные клетки в состоянии покоя генерируют спонтанные потенциалы частотой от 5 до 40 Гц, на которые накладываются зрительные сигналы. Известно несколько типов ганглиозных нейронов.

W-клетки (диаметр перикариона <10 мкм, скорость проведения ПД 8 м/сек) составляют 40% от общего числа всех ганглиозных клеток. W-клетки имеют обширное рецептивное поле, они получают сигналы от палочек, передаваемые биполярными и амакринными клетками, и ответственны за сумеречное зрение.

X-клетки (диаметр 10-15 мкм, скорость проведения около 14 м/сек, 55%) имеют небольшое рецептивное поле с дискретной локализацией. Они ответственны за передачу зрительного образа как такового и все виды цветного зрения.

Y-клетки (диаметр >35 мкм, скорость проведения >50 м/сек, 5%) - самые крупные ганглиозные клетки - имеют обширное дендритное поле и получают сигналы из различных областей сетчатки. Y-клетки реагируют на быстрые изменения зрительных образов, быстрые движения перед глазами, быстрые изменения интенсивности света. Эти клетки мгновенно сигнализируют в ЦНС, когда в какой-либо части зрительного поля неожиданно появляется новый зрительный образ.

on- и off-ответы. Многие ганглиозные нейроны возбуждаются при изменениях интенсивности освещения. Наблюдается два типа ответов: on-ответ на включение света и off-ответ на выключение света. Эти разные типы ответов появляются соответ-

ственно от деполяризованных или гиперполяризованных биполяров.

Цветовое зрение

Характеристики цвета. Цвет имеет три основных показателя: тон (оттенок), интенсивность и насыщение. Для каждого из цветов существует дополнительный (комплементарный) цвет, который, будучи должным образом перемешан с исходным цветом, дает ощущение белого цвета. Чёрный цвет является ощущением, создаваемым отсутствием света. Восприятие белого цвета, любого цвета спектра и даже дополнительных цветов спектра может быть достигнуто смешением в различных пропорциях красного (570 нм), зелёного (535 нм) и голубого (445 нм) цветов. Поэтому красный, зелёный и голубой - первичные (основные) цвета. Восприятие цвета зависит в какой-то мере от цвета других объектов в поле зрения. Например, красный объект кажется красным, если поле освещается зелёным или голубым цветом, и этот же красный объект будет казаться бледно-розовым или белым, если поле будет освещаться красным цветом.

Цветовосприятие - функция колбочек. Существует три типа колбочек, каждый из которых содержит только один из трёх разных (красный, зелёный и синий) зрительных пигментов.

Трихромазия - возможность различать любые цвета - определяется присутствием в сетчатке всех трёх зрительных пигментов (для красного, зелёного и синего - первичные цвета). Эти основы теории цветного зрения предложил Томас Янг (1802) и развил Герман Гельмгольц.

НЕРВНЫЕ ПУТИ И ЦЕНТРЫ

Зрительные пути

Зрительные пути подразделяют на старую систему, куда относятся средний мозг и основание переднего мозга, и новую систему (для передачи зрительных сигналов непосредственно в зрительную кору, расположенную в затылочных долях). Новая система фактически отвечает за восприятие всех зрительных образов, цвета и всех форм осознаваемого зрения.

Основной путь к зрительной коре (новая система). Аксоны ганглиозных клеток в составе зрительных нервов и (после перекреста) в составе зрительных трактов достигают латеральных коленчатых тел (ЛКТ, рис. 10-7А). При этом волокна от носовой половины сетчатки в зрительном перекресте не переходят на другую сторо-

Рис.10-7. Зрительные пути (А) и корковые центры (Б). А. Области перерезки зрительных путей обозначены сточными буквами, а возникающие после перерезки дефекты зрения показаны справа. ПП - перекрест зрительного нерва. ЛКТ - латеральное коленчатое тело. КШВ - коленчато-шпорные волокна. Б. Медиальная поверхность правого полушария с проекцией сетчатки в области шпорной борозды

ну. В левом ЛКТ (ипсилатеральном глазу) волокна от носовой половины сетчатки левого глаза и волокна от височной половины сетчатки правого глаза синаптически контактируют с нейронами ЛКТ, аксоны которых образуют коленчато-шпорный тракт (зрительная лучистость). Коленчато-шпорные волокна проходят к первичной зрительной коре той же стороны. Аналогично организованы пути от правого глаза.

Другие пути (старая система). Аксоны ганглиозных нейронов сетчатки проходят также в некоторые древние области мозга: ❖ к надперекрестным ядрам гипоталамуса (контроль и синхронизация циркадных ритмов); ❖ в ядра покрышки (рефлекторные движения глаз при фокусировании объекта, активация зрачкового рефлекса); ❖ в верхнее двухолмие (контроль быстрых направленных движений обоих глаз); ❖ в ЛКТ и окружающие их области (контроль поведенческих реакций).

Латеральное коленчатое тело (ЛКТ) - часть новой зрительной системы, где оканчиваются все волокна, проходящие в составе зрительного тракта. ЛКТ выполняет функцию передачи информации

из зрительного тракта к зрительной коре, в точности сохраняя топологию (пространственное расположение) разного уровня путей из сетчатки (рис. 10-7Б). Другая функция ЛКТ заключается в контроле над количеством информации, поступающей к коре. Сигналы для осуществления ЛКТ входного контроля поступают в ЛКТ в виде обратной импульсации из первичной зрительной коры и из ретикулярной области среднего мозга.

Зрительная кора

Первичная зрительная воспринимающая область располагается на соответствующей стороне шпорной борозды (рис. 10-7Б). Подобно другим частям новой коры, зрительная кора состоит из шести слоев, волокна коленчато-шпорного пути заканчиваются преимущественно на нейронах слоя IV. Этот слой подразделяется на подслои, принимающие волокна от ганглиозных клеток типа Y и X. В первичной зрительной коре (поле 17 по Бродманну) и зрительной области II (поле 18) осуществляется анализ трёхмерного расположения объектов, величины объектов, детализация предметов и их окраски, движения объектов и т.д.

Колонки и полоски. Зрительная кора содержит несколько миллионов вертикальных первичных колонок, каждая колонка имеет диаметр от 30 до 50 мкм и содержит около 1000 нейронов. Нейронные колонки формируют переплетённые между собой полоски шириной в 0,5 мм.

Цветовые колонкообразные структуры. Среди первичных зрительных колонок распределяются вторичные области - колонкоподобные образования («цветовые сгустки»). «Цветовые сгустки» получают сигналы от прилежащих колонок и специфически активируются цветовыми сигналами.

Взаимодействие зрительных сигналов из двух глаз. Зрительные сигналы, поступающие в мозг, остаются раздельными до их вхождения в слой IV первичной зрительной коры. Сигналы из одного глаза входят в колонки каждой полоски, то же самое происходит с сигналами из другого глаза. В ходе взаимодействия зрительных сигналов зрительная кора расшифровывает расположение двух зрительных образов, находит их корреспондирующие точки (точки в одинаковых участках сетчатки обоих глаз) и приспосабливает расшифрованную информацию для определения расстояния до объектов.

Специализация нейронов. В колонках зрительной коры имеются нейроны, выполняющие совершенно определённые функции (например, анализ контраста (в том числе цветового), границ и направлений линий зрительного образа и др.).

СВОЙСТВА ЗРИТЕЛЬНОЙ СИСТЕМЫ Движения глаз

Наружные мышцы глазного яблока. Движения глаз осуществляют шесть пар поперечно-полосатых мышц (рис. 10-8А), координируемых головным мозгом посредством III, IV, VI пар черепных нервов. Если прямая латеральная мышца одного глаза сокращается, то прямая медиальная мышца другого глаза сокращается на такую же величину. Прямые верхние мышцы работают вместе и перемещают глаза назад, чтобы можно было смотреть вверх. Прямые нижние мышцы дают возможность смотреть вниз. Косая верхняя мышца вращает глаз вниз и наружу, а косая нижняя мышца - вверх и наружу.

О Конвергенция. Одновременное и содружественное движение обоих глаз позволяет, рассматривая близкие предметы, сводить их (конвергенция).

О Дивергенция. Рассматривание далёких объектов приводит к разведению зрительных осей обоих глаз (дивергенция).

О Диплопия. Поскольку основная часть зрительного поля бинокулярна, ясно, что необходима высокая степень координации движений обоих глаз для удержания зрительного образа на кор-

Рис.10-8. Наружные глазные мышцы. А. Глазные мышцы левого глаза. Б. Типы движений глаз

респондирующих точках обеих сетчаток и тем самым избежать двоения в глазах (диплопия).

Типы движений. Имеется 4 типа движений глаз (рис. 10-8Б).

О Саккады - неощущаемые быстрые скачки (в сотые доли секунды) глаза, прослеживающие контуры изображения. Саккадические движения поддерживают удержание изображения на сетчатке, что достигается периодическим смещением изображения по сетчатке, приводящим к активации новых фоторецепторов и новых ганглиозных клеток.

О Плавные следящие движения глаза за движущимся объектом.

О Конвергирующие движения - сведение зрительных осей навстречу друг другу при рассматривании объекта вблизи от наблюдателя. Каждый тип движений контролируется нервным аппаратом раздельно, но в конечном итоге все влияния заканчиваются на мотонейронах, иннервирующих наружные мышцы глаза.

О Вестибулярные движения глаза - регулирующий механизм, появляющийся при возбуждении рецепторов полукружных каналов и поддерживающий фиксацию взора во время движений головы.

Физиологический нистагм. Даже в условиях, когда субъект пытается фиксировать взглядом неподвижный предмет, глазное яблоко продолжает осуществлять скачкообразные и другие движения (физиологический нистагм). Другими словами, нервно-мышечный аппарат глаза берёт на себя функцию удержания зрительного образа на сетчатке, так как попытка удержать зрительный образ неподвижно на сетчатке приводит к его исчезновению из поля зрения. Именно поэтому необходимость постоянного удержания объекта в поле зрения требует постоянного и быстрого смещения зрительного образа по сетчатке.

КРИТИЧЕСКАЯ ЧАСТОТА МЕЛЬКАНИЙ. Глаз сохраняет следы световой стимуляции в течение некоторого времени (150-250 мс) после выключения света. Иными словами, глаз воспринимает прерывистый свет как непрерывный при определённых интервалах между вспышками. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений мелькания в ощущение непрерывного света - критическая частота слияния мельканий (24 кадра в секунду). На этом явлении базируются телевидение и кино: человек не замечает промежутков между отдельными кадрами, так как зрительное ощущение от одного кадра ещё длится до появления другого. Тем самым создается иллюзия непрерывности изображения и его движения.

Водянистая влага

Водянистая влага непрерывно образуется и реабсорбируется. Баланс между образованием и реабсорбцией водянистой влаги регулирует объём и давление внутриглазной жидкости. Каждую минуту образуется от 2 до 3 мкл водянистой влаги. Эта жидкость вытекает между связками хрусталика и далее через зрачок в переднюю камеру глаза. Отсюда жидкость поступает в угол между роговицей и радужкой, проникает между сетью трабекул в шлеммов канал и изливается в наружные вены глазного яблока. Нормальное внутриглазное давление в среднем равняется 15 мм рт.ст. с колебаниями между 12 и 20 мм рт.ст. Уровень внутриглазного давления поддерживается постоянным с колебаниями ±2 мм и определяется сопротивлением оттоку из передней камеры в шлеммов канал при движении жидкости между трабекулами, в которых имеются проходы в 1-2 мкм.

Нейроны сетчатки. Фоторецепторы сетчатки синаптически связаны с биполярными нейронами. При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный нейрон, так и от него на ганглиозную клетку происходит безымпульсным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зрительный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, но резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные клетки) и между биполярными и ганглиозными клетками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и центробежные, или эфферентные, нервные волокна, приносящие к сетчатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчатки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зрительная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зрительного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие - от левых половин сетчаток.



После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых структур, но основное число волокон приходит в таламический подкорковый зрительный центр - латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекционную область зрительной зоны коры (стиарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохраняет ее топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы. Электрические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.

Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой - на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн (рис. 14.8). Волна а отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d - горизонтальных клеток.



На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем ляются импульсы. Ганглиозная клетка сетчатки - это первый нейрон «классического» типа в цепи фоторецептор - мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция) (рис. 14.9).

Диаметр рецептивных полей ганглиозных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация). Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов

10. Цветовосприятие. Трехкомпонентная теория цветового зрения (М.В.Ломоносов, Г.Гельмгольц, Т.Юнг) и теория оппонентных цветов (Э.Геринг). Особенности цветового зрения у детей.

есь видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны от 400 нм) излучением, которое мы называем фиолетовым цветом, и длинноволновым излучением (длина волны до 700 нм), называемым красным цветом. Остальные цвета видимого спектра (синий, зеленый, желтый, оранжевый) имеют промежуточные значения длины волны. Смешение лучей всех цветов дает белый цвет. Он может быть получен и при смешении двух так называемых парных дополнительных цветов: красного и синего, желтого и синего. Если произвести смешение трех основных цветов - красного, зеленого и синего, то могут быть получены любые цвета.

Теории цветоощущения. Наибольшим признанием пользуется трехкомпонентная теория (Г. Гельмгольц), согласно которой цветовое восприятие обеспечивается тремя типами колбочек с различной цветовой чувствительностью. Одни из них чувствительны к красному цвету, другие - к зеленому, а третьи - к синему. Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Эта теория прямо подтверждена в опытах, где микроспектрофотометром измеряли поглощение излучений с разной длиной волны у одиночных колбочек сетчатки человека.

Согласно другой теории, предложенной Э. Герингом, в колбочках есть вещества, чувствительные к бело-черному, красно-зеленому и желто-синему излучениям. В опытах, где микроэлектродом отводили импульсы ганглиозных клеток сетчатки животных при освещении монохроматическим светом, обнаружили, что разряды большинства нейронов (доминаторов) возникают при действии любого цвета. В других ганглиозных клетках (модуляторах) импульсы возникают при освещении только одним цветом. Выявлено 7 типов модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм).

В сетчатке и зрительных центрах найдено много так называемых цветооппонентных нейронов. Действие на глаз излучений в какой-то части спектра их возбуждает, а в других частях спектра - тормозит. Считают, что такие нейроны наиболее эффективно кодируют информацию о цвете.

Последовательные цветовые образы. Если долго смотреть на окрашенный предмет, а затем перевести взор на белую бумагу, то тот же предмет виден окрашенным в дополнительный цвет. Причина этого явления в цветовой адаптации, т. е. снижении чувствительности к этому цвету. Поэтому из белого света как бы вычитается тот, который действовал на глаз до этого, и возникает ощущение дополнительного цвета.

Внутреняя оболочка глаза-сетчатка-является рецепторным отделом зрительного анализатора,в котором происходит восприятие света и првичный анализ зрительных ощущений. Луч света,проходя через роговицу,хрусталик,стекловидное тело и всю толщу сетчатки,вначале попадает на наружный(наиболее удаленный от зрачка слой клеток пигментного эпителия. Пигмент,расположенный в этих клетках,поглощает свет,препятствую тем самым его отражению и рассеиванию,что способствует четкости восприятия.К пигментному слою изнутри прилегают фоторецепторные клетки-палочки и колбочки,расположенные неравномерно(в области желтого пятна находятся только колбочки,по направлению к периферии кол-во колбочек уменьш,а палочек увелич)Палочки отвечают за сумеречное видение,колбочки-за цветовое.Микроскопически сетчатка представляет собой цепь 3х нейронов: фоторецепторы-наружный нейрон,ассоциативный-средний,ганглионарный-внутр.Передачу нервного импульса с 1 на 2 нейрон обеспечиваю синапсы в наружном(плексиформном) слое.2нейрон-биполярная клетка,кот одним отростком контактирует с фотосенсорной клеткой,а другим-с с дентридами ганглиозным клеток.Биполярные клетки контактирую с несколькими палочками и лишь с одной колбочкой.Фоторецепторы,соединенные с одной клеткой,образуют рецетивное поле ганглиозной клетки.Аксоны третьих клеток,слваясь,образуют ствол зрительного нерва.

Фотохимические процессы в сетчатке глаза . В рецепторных клетках сетчатки нахо­дятся светочувствительные пигменты - сложные белковые вещества хромопротеиды, которые обесцвечиваются на свету. В палоч­ках на мембране наружных сегментов содер­жится родопсин, в колбочках - йодопсин и другие пигменты. Родопсин и йодопсин состоят из ретиналя (альдегид витамина А,) и гликопротеида оп-сина.

Если в орга­низме снижается содержание витамина А, то процессы ресинтеза родопсина ослабевают, что приводит к нарушению сумеречного зре­ния - так называемой «куриной слепоте». При постоянном и равномерном освещении устанавливается равновесие между скорос­тью распада и ресинтеза пигментов. Когда количество света, падающего на сетчатку, уменьшается, это динамическое равновесие нарушается и сдвигается в сторону более вы­соких концентраций пигмента. Этот фотохи­мический феномен лежит в основе темновой адаптации.

Особое значение в фотохимических про­цессах имеет пигментный слой сетчатки, ко­торый образован эпителием, содержащим фусцин. Этот пигмент поглощает свет, пре- пятствуя отражению и рассеиванию его, что обеспечивает четкость зрительного воспри­ятия. Отростки пигментных клеток окружают светочувствительные членики палочек и кол­бочек, принимая участие в обмене веществ фоторецепторов и в синтезе зрительных пиг­ментов.

В фоторецепторах глаза при действии света вследствие фотохимических процессов возникает рецепторный потенциал вследст­вие гиперполяризации мембраны рецептора. Это отличительная черта зрительных рецеп­торов, активация других рецепторов выража­ется в виде деполяризации их мембраны. Амплитуда зрительного рецепторного потен­циала увеличивается при увеличении интен­сивности светового стимула.

Движения глаз играют весьма важную роль в зрительном восприятии. Даже в том случае, когда наблюдатель фиксирует взглядом неподвижную точку, глаз не находится в покое, а все время совершает небольшие движения, которые являются непроизвольными. Движения глаз выполняют функцию дезадаптации при рассматривании неподвижных объектов. Другая функция мелких движений глаза – удерживание изображения в зоне ясного видения.

В реальных условиях работы зрительной системы глаза все время перемещаются, обследуя наиболее информативные участки поля зрения. При этом одни движения глаз позволяют рассматривать предметы, расположенные на одном удалении от наблюдателя, например, при чтении или рассматривании картины, другие – при рассматривании объектов, находящихся на разном удалении от него. Первый тип движений – это однонаправленные движения обоих глаз, в то время как второй осуществляет сведение или разведение зрительных осей, т.е. движения направлены в противоположные стороны.

Показано, что перевод глаз с одних объектов на другие определяется их информативностью. Взор не задерживается на тех участках, которые содержат мало информации, и в то же время длительно фиксирует наиболее информативные участки (например, контуры объекта). Эта функция нарушается при поражении лобных долей. Движение глаз обеспечивает восприятие отдельных признаков предметов, их соотношение, на основе чего формируется целостный образ, хранящийся в долговременной памяти.

Размер: px

Начинать показ со страницы:

Транскрипт

1 Текущие тесты по разделу ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ (СЕНСОРНЫХ СИСТЕМ) 1. Общая физиология анализаторов 1. Термин "анализатор" был впервые введен в физиологию в 1909 году: а) Н.Е. Введенским б) А.А. Ухтомским в) И.П. Павловым г) Ч. Шеррингтоном 2. Анализатор - единая система, включающая: а) органы чувств б) периферический рецепторный аппарат, проводниковый отдел и центральный корковый отдел в) периферический рецепторный аппарат, проводниковый отдел и центральный корковый отдел, систему регуляции по принципу обратной связи г) проводниковый отдел и центральный корковый отдел 3. Специализированные структуры, воспринимающие действие раздражителя: а) синапсы б) сенсорные системы в) рецепторы г) анализаторы 4. В состав анализатора не входит: а) рецепторный аппарат б) проводящие пути в) ретикулярная формация г) центр в коре полушарий 5. Преобразование стимула в нервный импульс в рецепторе называют: а) первичным кодированием б) сенсибилизацией в) декодированием г) адаптацией 6. Сила раздражителя кодируется в нейроне: а) частотой импульсов б) длительностью импульсов в) амплитудой импульсов 7. Элементарный низший анализ воздействия внешней среды происходит в: а) Рецепторе б) Ретикулярной формации в) Проводящих путях г) Коре большого мозга 8. Высший тончайший анализ воздействия внешней среды у человека происходит в: а) Рецепторе б) Стволе мозга в) Промежуточном мозге г) Коре большого мозга

2 9. Высший уровень взаимодействия анализаторов: а) бульбарный б) стволовой в) кортикальный г) таламический 10. Рецепторы, специализированные к восприятию нескольких видов раздражителя: а) полимодальные б) эффекторные в) сенсорные г) специфические 11. К контактным рецепторам относятся рецепторы: а) Обонятельные б) Вкусовые в) Слуховые г) Зрительные 12. К дистантным рецепторам относятся рецепторы: а) Тактильные б) Болевые в) Вкусовые г) Слуховые 13. К интерорецепторам относятся: а) Проприорецепторы б) Висцерорецепторы в) Фоторецепторы г) Вестибулорецепторы 14. К контактным рецепторам относятся рецепторы: а) Тактильные б) Обонятельные в) Вестибулорецепторы г) Фоторецепторы 15. К дистантным рецепторам относятся рецепторы: а) Вкусовые б) Фоторецепторы в) Тактильные г) Болевые 16. К первичночувствующим рецепторам относят: а) вкусовые почки б) волосковые клетки улитки в) тактильные рецепторы г) фоторецепторы сетчатки

3 17. Ко вторичночувствующим рецепторам относят: а) интрафузальные мышечные волокна б) фоторецепторы сетчатки в) тактильные г) обонятельные 18. Рецепторный потенциал имеет характер: а) распространяющийся б) локальный 19. Какой электрический процесс первым регистрируется в первичночувствующих рецепторах? а) рецепторный потенциал б) генераторный потенциал в) потенциал действия 20. Нейромедиатор, наиболее часто секретируемый вторичночувствующими рецепторами: а) ацетилхолин б) гистамин в) серотонин г) норадреналин 21. Избирательную чувствительность рецептора к действию определённого раздражителя называют: а) специфичностью б) аккомодацией в) возбудимостью г) адаптацией 22. Способность рецепторов приспосабливаться к постоянно действующему раздражителю называют: а) аккомодацией б) модальностью в) адаптацией г) кодированием 23. Адаптация рецептора при длительном действии на него раздражителя заключается в: а) уменьшении порога раздражения б) уменьшении возбудимости рецепторов в) увеличении возбудимости рецепторов 24. Частота возникновения импульсов в рецепторах в процессе их адаптации: а) уменьшается б) не изменяется в) увеличивается 25. Отсутствует свойство адаптации у рецепторов: а) Тактильных рецепторов б) Вкусовых рецепторов в) Проприорецепторов г) Обонятельных рецепторов

4 26. К рецепторам, практически не обладающим адаптацией, относят: а) температурные б) вестибулярные в) вкусовые г) тактильные 27. Внешним анализатором человека является анализатор: а) Двигательный б) Обонятельный в) Вестибулярный г) Интероцептивный 28. Внутренним анализатором человека является анализатор: а) Обонятельный б) Вкусовой в) Двигательный г) Кожный 29. Внешним анализатором человека является анализатор: а) Вестибулярный б) Двигательный в) Интероцептивный г) Вкусовой 30. К внешним анализаторам человека не относится анализатор: а) Вестибулярный б) Слуховой в) Зрительный г) Кожный 31. К внутренним анализаторам человека не относится анализатор: а) Интероцептивный б) Вестибулярный в) Слуховой г) Двигательный 2. Физиология зрительного анализатора 32. К вспомогательному аппарату глаза не относятся: а) Мышцы глазного яблока б) Мимические мышцы в) Слезный аппарат г) Защитные приспособления (брови, ресницы, веки) 33. Двигательный аппарат глазного яблока включает произвольных мышц: а) Пять б) Шесть в) Семь г) Восемь

5 34. В сетчатке глаза имеется палочек около: а) 7 млн. б) 65 млн. в) 130 млн. г) 260 млн. 35. Какие рецепторы составляют жёлтое пятно сетчатки? а) Палочки б) Колбочки 36. На периферии сетчатки больше: а) колбочек б) палочек 37. Аппаратом дневного и цветового зрения глаза являются: а) Палочки б) Колбочки в) Ганглиозные клетки г) Биполярные клетки 38. Аппаратом сумеречного зрения глаза являются: а) Биполярные клетки б) Ганглиозные клетки в) Палочки г) Колбочки 39. В рецепторе зрительного анализатора при формировании рецепторного потенциала мембрана: а) реполяризуется б) деполяризуется в) гиперполяризуется 40. Место выхода зрительного нерва из глазного яблока называют: а) слепым пятном б) центральной ямкой в) конечным путём г) жёлтым пятном 41. Аксоны каких клеток сетчатки образуют зрительный нерв? а) Амакриновых б) Горизонтальных в) Биполярных г) Ганглиозных 42. Совокупность рецепторов, раздражение которых вызывает возбуждение одной ганглиозной клетки сетчатки, называют: а) рецептивным полем б) слепым пятном в) жёлтым пятном г) центральной ямкой

6 43. Подкорковый центр зрительного анализатора находится в: а) продолговатом мозге б) мосту в) лимбической системе г) латеральных коленчатых телах таламуса и верхних холмиках четверохолмия 44. Центр зрительного анализатора локализован в области коры: а) затылочной б) теменной в) височной г) лобной 45. Способность глаза различать две светящиеся точки, проекции которых падают на сетчатку под углом в одну минуту, называют: а) нормальной остротой зрения б) рефракцией глаза в) пресбиопией г) астигматизмом 46. Способность глаза настраиваться на чёткое видение предметов в зависимости от их удалённости называют: а) аккомодацией б) остротой зрения в) пресбиопией г) астигматизмом 47. Аккомодация глаза осуществляется в основном за счет: а) Стекловидного тела б) Роговицы в) Хрусталика г) Водянистой влаги камер 48. Механизм аккомодации глаза состоит в изменении: а) кривизны хрусталика б) количества палочек в) количества активных рецепторов г) диаметра зрачка 49. Нормальное преломление световых лучей глазными средами и фокусирование их на сетчатке - это: а) Эмметропия б) Миопия в) Гиперметропия г) Астигматизм 50. Повышение чувствительности глаза в темноте связано с: а) распадом йодопсина б) синтезом йодопсина в) синтезом родопсина г) распадом родопсина

7 51. Полная адаптация глаз при выходе из светлого помещения в более темное происходит за: а) 1-3 мин б) 4-5 мин в) мин г) мин 52. Адаптация глаз при выходе из темного помещения на яркий свет происходит за: а) 1-3 мин б) 4-5 мин в) мин г) мин 53. Бинокулярное зрение обеспечивает: а) фокусировку лучей на сетчатке б) различение оттенков цвета в) объёмное видение 54. Пространство, видимое одним глазом при фиксации взора, называют: а) полем зрения б) рецептивным полем в) пространственным порогом г) остротой зрения 55. Реакцию зрачка на действие света, проявляющуюся в его сужении, называют: а) зрачковым рефлексом б) рефракцией зрения в) астигматизмом г) аккомодацией 56. Запись суммарной электрической активности фоторецепторов сетчатки называют: а) электроретинограммой б) электрокардиограммой в) электроэнцефалограммой г) кимограммой 57. Внутриглазное давление в норме у человека составляет: а) 6-15 мм рт. ст. б) мм рт. ст. в) мм рт. ст. г) мм рт. ст. 58. Старческая дальнозоркость, развивающаяся у людей после лет, - это: а) Миопия б) Пресбиопия в) Эмметропия г) Астигматизм 59. Старческая дальнозоркость обусловлена: а) потерей эластичности хрусталика б) рефракцией зрения в) неодинаковым радиусом кривизны хрусталика г) снижением количества палочек

8 60. При гиперметропии и пресбиопии главный фокус находится: а) за сетчаткой б) перед сетчаткой в) на сетчатке 61. При миопии (близорукости) главный фокус находится: а) перед сетчаткой б) на сетчатке в) за сетчаткой 62. Аномалия рефракции, при которой световые лучи фокусируются позади сетчатки. - это: а) Миопия б) Эмметропия в) Астигматизм г) Гиперметропия 63. Аномалия рефракции, при которой световые лучи фокусируются впереди сетчатки, - это: а) Эмметропия б) Миопия в) Гиперметропия г) Пресбиопия 64. Близорукость корректируют при помощи: а) цилиндрических линз б) астигматических линз в) двояковыпуклых линз г) двояковогнутых линз 65. Неодинаковое преломление лучей разными участками роговицы называют: а) астигматизмом б) пресбиопией в) аккомодацией г) рефракцией 3. Физиология слухового анализатора 66. К звукопроводящим образованиям слухового анализатора относят: а) барабанную перепонку, молоточек, наковальню, стремечко б) евстахиеву трубу, преддверие в) кортиев орган, полукружные протоки 67. Евстахиева (слуховая) труба входит в состав: а) Наружного уха б) Среднего уха в) Внутреннего уха г) Носоглотки 68. Барабанная полость имеет объем около: а) 1 см 3 б) 2 см 3 в) 3 см 3 г) 4 см 3

9 69. Улитка входит в состав уха: а) Наружного б) Среднего в) Внутреннего 70. Спиральный (Кортиев) орган находится в: а) средней лестнице б) лестнице преддверия в) барабанной лестнице г) барабанной полости 71. Эндолимфа находится в: а) средней лестнице б) лестнице преддверия в) барабанной лестнице г) барабанной полости 72. К рецепторному отделу слухового анализатора относят: а) волосковые клетки б) барабанную перепонку в) основную мембрану г) покровную мембрану 73. Возбуждение рецепторов в кортиевом органе возникает при: а) деформации барабанной перепонки б) деформации волосковых клеток в) колебании барабанной перепонки г) колебании перилимфы 74. В рецепторе слухового анализатора при формировании рецепторного потенциала мембрана: а) реполяризуется б) деполяризуется в) гиперполяризуется 75. Подкорковый центр слухового анализатора расположен в: а) Продолговатом мозге б) Мосту в) Лимбической системе г) Медиальных коленчатых телах таламуса и нижних холмиках четверохолмия 76. Корковое представительство слухового анализатора находится в: а) височной области б) теменных долях в) затылочной области г) соматосенсорной коре 77. Область восприятия человеком звуковых колебаний находится в диапазоне: а) Гц б) Гц в) Гц г) Гц

10 78. Звуки речи имеют частоту колебаний в секунду в диапазоне: а) Гц б) Гц в) Гц г) Гц 4. Физиология вкусового анализатора 79. Рецепторный потенциал в структурах вкусовой луковицы возникает: а) во вкусовой клетке б) в базальных клетках в) в опорных клетках г) во вкусовом канале 80. Вкусовые рецепторы относят к: а) дистантному типу б) контактному типу 81. К какому типу относят рецепторные клетки вкусового анализатора? а) К вторичночувствующим б) К первичночувствующим 82. Каким ионам отводят основную роль в генерации рецепторного потенциала при ощущении солёного вкуса? а) Ca2+ б) Н+ в) Na+ г) Cl- 83. Каким ионам отводят основную роль в генерации рецепторного потенциала при ощущении кислого? а) Ca2+ б) Н+ в) Na+ г) CI- 84. К какому вкусу наиболее быстро наступает адаптация? а) К сладкому б) К горькому в) К вкусу глутамата г) К кислому 85. Корковое представительство вкусового анализатора находится в: а) постцентральной извилине б) гиппокампе, грушевидной коре в) затылочной области коры г) мозжечке

11 5. Физиология обонятельного анализатора 86. Укажите рецепторную обонятельную структуру: а) Эпителиальные клетки б) Биполярные нейроны в) Псевдоуниполярные нейроны г) Обонятельные луковицы 87. К какому типу относят обонятельные рецепторы? а) к интерорецептивным б) к экстероцептивным в) к проприорецептивным 88. К какому типу относят обонятельные рецепторы? а) К контактным б) К дистантным 89. Рецепторные обонятельные клетки относят к: а) вторичночувствующим б) первичночувствующим 90. В какой последовательности обонятельная информация направляется в мозг? а) Обонятельные нервы обонятельные луковицы обонятельный тракт обонятельный треугольник переднее продырявленное вещество гиппокамп б) Обонятельный тракт обонятельные луковицы обонятельные нервы обонятельный треугольник переднее продырявленное вещество гиппокамп в) Обонятельные луковицы обонятельный треугольник переднее продырявленное вещество обонятельные нервы - гиппокамп 91. Правильная последовательность обработки информации в обонятельном анализаторе: а) обонятельная луковица передний мозг б) обонятельная луковица средний мозг передний мозг в) обонятельная луковица таламус передний мозг г) обонятельная луковица продолговатый мозг 92. Корковое представительство обонятельного анализатора находится в: а) гиппокампе, крючке б) затылочной области коры в) теменной области коры г) соматосенсорной зоне коры 93. Тепловые рецепторы кожи представлены: а) Тельцами А. Руффини б) Колбами В. Краузе в) Тельцами Г. Мейснера г) Дисками Ф. Меркеля. 94. Холодовые рецепторы кожи представлены: а) Тельцами А. Руффини б) Колбами В. Краузе в) Тельцами Г. Мейснера г) Дисками Ф. Меркеля. 6. Физиология температурного анализатора

12 95. В коже более глубоко локализуются: а) холодовые рецепторы б) тепловые рецепторы в) тельца Пачини 96. На единицу поверхности кожи приходится больше: а) тепловых рецепторов б) холодовых рецепторов 97. Корковое представительство температурного анализатора находится в: а) прецентральной извилине б) постцентральной извилине в) затылочной области коры г) височной области коры 98. Тактильные рецепторы кожи представлены: а) Тельцами А. Руффини б) Колбами В. Краузе в) Тельцами Г. Мейснера г) Тельцами А. Фатера - Ф. Пачини. 99. К рецепторам давления кожи относятся: а) Тельца А. Руффини б) Тельца Г. Мейснера в) Тельца А. Фатера - Ф. Пачини г) Свободные нервные окончания. 7. Физиология тактильного анализатора 100. Минимальное расстояние между двумя точками, при одновременном раздражении которых возникает ощущение двух прикосновений, называют: а) пространственным порогом б) пороговой силой в) порогом раздражения г) порогом чувствительности 101. Максимальным пространственным порогом обладает: а) спина б) предплечье в) тыльная сторона кисти г) палец руки 102. Минимальным пространственным порогом обладает: а) палец руки б) предплечье в) подошвенная часть стопы г) спина

13 8. Физиология двигательного анализатора 103. Функция двигательного (проприоцептивного) анализатора свойственна в основном мышцам: а) Сердца б) Скелетным в) Сосудов г) Внутренних органов 104. Рецепторы растяжения мышцы: а) мышечные веретёна б) колбы Краузе в) диски Меркеля г) тельца Мейснера 105. Сухожильный орган Гольджи расположен: а) в сухожилиях мышц б) среди экстрафузальных мышечных волокон в) в дистальных отделах интрафузальных волокон г) в ядерной сумке интрафузальных волокон 106. Интрафузальные мышечные волокна выполняют функцию: а) обеспечения слабого сокращения б) обеспечения чувствительности мышечного веретена к растяжению в) расслабления мышцы 9. Физиология ноцицептивного (болевого) анализатора 107. Восприятие боли, возникающее в результате повреждения тканей организма, называют: а) ноцицепцией б) иррадиацией в) аналгезией г) перцепцией 108. Болевые рецепторы: а) тельца Мейснера б) колбы Краузе в) свободные нервные окончания г) тельца Руффини


Физиология анализаторов. Тест текущего контроля 1. Термин "анализатор" был впервые введен в физиологию в 1909 году Н.Е. Введенским А.А. Ухтомским И.П. Павловым Ч. Шеррингтоном 2. Выберите наиболее точный

ОРГАНЫ ЧУВСТВ. РЕЦЕПТОРЫ. ПРИНЦИПЫ КОДИРОВАНИЯ ИНФОРМАЦИИ. СЕНСОРНЫЕ РЕЦЕПТОРЫ Сенсорные рецепторы это специфические клетки, настроенные на восприятие различных раздражителей внешней и внутренней среды

Развитие сенсорных систем организма Сенсорные системы (анализаторы) - это единые системы анализа информации, состоящие из 3-х отделов: периферического, проводникового и центрального. Отделы (звенья) Периферический

8 класс Тема: Анализаторы или сенсорные системы Общая характеристика сенсорных систем. Их строение, функции. Основные физиологические свойства сенсорных систем. Зрительный анализатор. Строение глаза. Светопреломляющие

8класс Биология профиль Тема: Органы чувств Задание 1 Органы чувств Зрительные рецепторы расположены в оболочке глаза, которая называется... [Сетчаткой Радужной Роговицей Сосудистой] Задание 2 Органы чувств

Анализаторы и органы чувств Анализатор включает 3 компонента: Периферическая часть (рецепторы, орган чувств) Проводниковый отдел (нервные волокна) Центральный отдел (зона коры больших полушарий) Воспринимает

Анализатор (греч. analysis разложение, расчленение) это совокупность нервных структур, воспринимающих и анализирующих различные внешние и внутренние раздражения. Термин предложил И. П. Павлов в 1909 году.

Анализаторы, органы чувств и их значение Анализаторы. Все живые организмы, в том числе и человек, нуждаются в информации об окружающей среде. Эту возможность им обеспечивают сенсорные (чувствительные)

Биофизические процессы в наружном, среднем и внутреннем ухе. Слуховая сенсорная система включает: Структура наружного уха. Функции наружного уха. Направленность слухового восприятия. Среднее ухо (барабанная

Тест по биологии Анализаторы Органы чувств 8 класс 1 вариант 1. Функция органов чувств состоит в преобразовании энергии внешнего раздражения в форму, доступную для раздражения А. Рецепторов Б. Спинного

Российский университет дружбы народов Медицинский институт Кафедра анатомии человека Специальность: Сестринское дело Доцент Гурова О.А. ОРГАНЫ ЧУВСТВ План лекции: 1. Закономерности строения органов чувств

Виды чувствительности (рецепции) экстероцептивная общая (соматосенсорная) - тактильная, болевая, температурная специальная зрительная слуховая обонятельная вкусовая гравитационная (равновесия) интероцептивная

ИТОГОВЫЕ ТЕСТЫ по разделу ФИЗИОЛОГИЯ АНАЛИЗАТОРОВ (СЕНСОРНЫХ СИСТЕМ) Выберите один правильный ответ 1. Изменение чувствительности рецепторов в сторону понижения называется: а) возбудимостью б) специфичностью

ОРГАНЫ ЧУВСТВ Орган зрения Органы чувств (анализаторы) Анатомические образования (приборы) (i) воспринимающие энергию внешнего воздействия, (ii) трансформирующие ее в нервный импульси и (iii) передающие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Биолого-почвенный факультет Кафедра физиологии и психофизиологии УТВЕРЖДАЮ Председатель УМК факультета 2004 г. : ПРОГРАММА

Национальный фармацевтический университет Кафедра физиологии и анатомии человека Зрительный анализатор. Возрастные особенности анализаторов Шаталова О.М. План 1. Общие принципы строения сенсорных систем.

ТЕМА «Анализаторы» 1. Начальным звеном обонятельного анализатора считают 1) нервы и проводящие нервные пути 2) рецепторы, расположенные на языке 3) нейроны коры больших полушарий головного мозга 4) чувствительные

304-Группа: Фаттоева Зарина. Проверила: Рахматова Н.Б Самарканд - 2016 ТЕОРИЯ ФУНКЦИОНАЛЬНЫХ СИСТЕМ Петр Кузьмич Анохин (1898-1974) Функциональная система динамическая саморегулирующаяся организация, все

Лекция 6. Психические познавательные ощущения и восприятия процессы: 6.2 Понятие об ощущениях Согласно А.В. Петровскому, ощущения это отражение отдельных свойств предметов и явлений, непосредственно воздействующих

Перечень вопросов к итоговому контролю Центральная нервная система. 1. Развитие центральной нервной системы в эмбриогенезе. Основные этапы формирования нервной системы в филогенезе. 2. Развитие головного

ИТОГОВОЕ ЗАНЯТИЕ ПО РАЗДЕЛАМ «ЧАСТНАЯ ФИЗИОЛОГИЯ НЕРВНОЙ СИСТЕМЫ. ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ» Основные вопросы: 1. Спинной мозг. Функции спинного мозга. Основные спинальные рефлексы. Последствия повреждения

1 1.7. Анализаторы человека 1.7.1. Устройство анализатора. Зрительный анализатор Изменение условий окружающей среды и состояние внутренней среды человека воспринимается нервной системой, которая регулирует

АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ «НЕЙРОФИЗИОЛОГИЯ» Реализуется в базовой части учебного плана подготовки специалиста обучающего по направлению подготовки (специалиста) ФГОС 37.05.01./ клиническая психология

НЕРВНАЯ СИСТЕМА. ОРГАНЫ ЧУВСТВ. 1. Нейрон: определение, части, морфологическая классификация, строение, топография, 2. Строение простой и сложной рефлекторной дуги 3. Развитие центральной нервной системы

Сенсорная система Выберите один правильный ответ 001. Сетчатка развивается 1)из внутреннего листка глазного бокала 2)из наружного листка глазного бокала 3)из эктодермы, расположенной перед глазным пузырьком

Тема: НЕРВНАЯ СИСТЕМА (6 часов). Общий обзор нервной системы. Строение и функция нервной системы. Классификация по топографическому и функциональному признакам. Нейрон основная структурно-функциональная

ТЕСТОЫЕ ОПРОСЫ Общая физиология сенсорных систем Физиология зрения Физиология чувства равновесия и слуха Соматовисцеральная чувствительность, боль Лекция 1 Общая физиология сенсорных систем 1. *Какие явление

Тесты текущего контроля по теме Частная физиология нервной системы 1. В каких рогах спинного мозга расположены тела альфа-мотонейронов? а) В задних б) В боковых в) В передних 2. В спинном мозге замыкаются

Примерные задания по Биологии П4 8класс 1. В какой доле коры больших полушарий находится слуховая зона: А) лобная Б) затылочная В) теменная Г) височная 2. Сколько аксонов может иметь нервная клетка: А)

ПО БИОЛОГИИ И ГЛАЗА РАЗРАБОТКА СТРЕЛЬНИКОВОЙ ВИКТОРИИ ВИКТОРОВНЫ, МЕТОДИСТА ОТДЕЛА НАУЧНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ ГБОУ ИРО КК (АРМАВИРСКИЙ ФИЛИАЛ) ГЛАЗА РАДУЖКА ХРУСТАЛИК

Характеристики анализаторов человека Анализатор человека подсистема центральной нервной системы, обеспечивающая приём и первичный анализ информации. Периферийная часть анализатора рецептор, центральная

Геометрическая теория оптических изображений Если пучок световых лучей, исходящий из какой-либо точки A, в результате отражений, преломлений или изгибаний в неоднородной среде сходится в точке A, то A

1 - «УТВЕРЖДАЮ» Заведующий кафедрой нормальной физиологии, д. м. н., профессор С.В. Клаучек Протокол 1 от «29» августа 2014 года МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ ВНЕАУДИТОРНОЙ САМОСТОЯТЕЛЬНОЙ

Вестибулярный и кинестетический анализаторы 1. Организация вестибулярного анализатора 2. Организация кинестетического анализатора 3. Внутренние (висцеральные) анализаторы Вопрос_1 Организация вестибулярного

ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ 1 Общая организация мозга 2 Структурно-функциональная модель интегративной работы мозга (Лурия А. Р.) 3 Конечный мозг образован двумя полушариями, которые

СЛУХОВОЙ АНАЛИЗАТОР Понимание общего механизма действия музыки на организм человека невозможно без знания строения слухового анализатора и принципов его работы. Слуховой анализатор предназначен для восприятия

МИНИСТЕРСТО ОРАЗОАНИЯ И НАУКИ РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Мурманский государственный гуманитарный университет» (ФОУ ПО «МУ»)

АНАЛИЗАТОРЫ ОБЩИЕ СВОЙСТВА АНАЛИЗАТОРОВ 1. Сила раздражителя кодируется в рецепторе: 1. частотой возникновения рецепторного потенциала 2. амплитудой рецепторного потенциала 2. Рецепторы, специализированные

МАТЕРИАЛЫ для подготовки к тестированию по биологии 8 класс Учитель: Кутурова Галина Алексеевна ТЕМА Раздел «Нервная система» Раздел «Зрительный анализатор» ЗНАТЬ/УМЕТЬ Значение, строение и функционирование

3 Содержание Введение. 4 Раздел 1. Нервная система и анализаторы.5 1.1. Функции и строение нервной системы 6 1.1.1. Центральная нервная система.11 1.1.2. Вегетативная нервная система 15 1.2. Значение и

Физиология с основами анатомии Слуховой и вестибулярный анализаторы к.м.н. доц. Кучук А.В. Слуховойанализатор Адекватный раздражитель механическая волна вдиапазоне20 20000 Гц Параметры механической волны

ОРГАНЫ ЧУВСТВ: Орган слуха и равновесия Орган обоняния Орган вкуса Кожный покров Преддверно-улитковый орган (орган слуха и равновесия) Подразделяется на 3 части, связанных анатомически и функционально):

Министерство транспорта Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «РОССИЙСКИЙ УНИВЕРСИТЕТ ТРАНСПОРТА (МИИТ)» Кафедра психологии, социологии,

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ ОХРАНЫ ТРУДА Учебное пособие Cанкт-Петербург 2006 Министерство образования и науки Российской Федерации Федеральное агентство по образованию САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Тема: Центральная нервная система. Спинной и головной мозг. Периферическая нервная система. 1-вариант 1. Ствол мозга составляет: 1) мост, продолговатый мозг 2) продолговатый мозг 3) средний мозг, мост

Костанайский государственный университет имени А. Байтурсынова Краткие данные по физиологии органа зрения Доцент Байкенов М.Т. Основной функцией зрительного анализатора животных является восприятие света,

Нервные окончания, классификация Концевые аппараты (межнейронные синапсы) Эффекторные нервные окончания (эффекторы, нейроорганные синапсы) Чувствительные (рецепторные) нервные окончания Синапсы дендриты

ОСНОВНЫЕ СВОЙСТВА СЛУХА Орган слуха человека является своеобразным приемником звука, резко отличающимся от приемников звука, создаваемых человеком. Ухо человека обладает свойствами частотного анализатора,

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН САМАРКАНДСКИЙ МЕДИЦИНСКИЙ ИНСТИТУТ РЕФЕРАТ ТЕМА: СПИННОЙ МОЗГ Выполнил: Вохидов У. САМАРКАНД-2016 СПИННОЙ МОЗГ Значение нервной системы Нервная система

АНАЛИЗАТОРЫ КОЖИ 1. Строение кожи и расположение рецепторов 2. Структура и функции тактильного анализатора 3. Структура и функции температурного анализатора Вопрос_1 Строение кожи и расположение рецепторов

Глаз и его функции Лекция 1. Строение глаза. Аккомодация. Бинокулярное зрение. 2. Недостатки оптической системы глаза. 3. Угол зрения. Разрешающая способность. Острота зрения. 4. Акустическая биомеханика

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Естественных наук 2. Направление подготовки 06.03.01 Биология, профиль Общая

Вопросы теоретической части ИТОГОВОЕ ЗАНЯТИЕ по НЕВРОЛОГИИ (ЦНС) 1. Фило- и онтогенез нервной системы. 2. Отделы нервной системы и их значение. 3. Нейрон структурно-функциональная единица нервной системы.

Лекция 13. Тема: Сенсорная система организма Вопросы темы: Общая физиология анализаторных систем организма. Понятия о ротовом или оральном анализаторе, роль в апробации пищевых веществ. Вкусовой и обонятельный

Основы геометрической оптики. Аппарат зрения человека План 1. Основные понятия геометрической оптики. 2. Светопроводящая и световоспринимающая системы глаза. 3. Недостатки зрения. Свет это электромагнитные

МАТЕРИАЛЫ Для подготовки по биологии 8.1 класс Модуль 4 Учитель: З.Ю. Соболева Раздел/Тема Знать Уметь Органы чувств Строение зрительного аппарата Строение органа слуха и вестибулярного аппарата Основные

ТЕМА «Нервная система» 1. Какую функцию в организме человека и животного выполняет нервная клетка 1) двигательную 2) защитную 3) транспорта веществ 4) проведения возбуждения 2. В каком отделе мозга расположен

ПЕРЕЧЕНЬ ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ Нейроанатомия как наука 1. История развития взглядов и учений о морфологической и функциональной организации центральной нервной системы (Р.Декарт, Ф.Галль, В.Бец и т.д.).

Фамилия Шифр Имя Район Рабочее место Шифр Итого балов ЗАДАНИЕ (демонстрационный вариант) практический тур межрегиональной олимпиады школьников по биологии «АЛЬФА», 2014-2015 уч. год, 9 класс Демонстрационная

Чувства БИОЛОГИЯ ЧЕЛОВЕК ЧУВСТВА Глава 1: Наши чувства Зачем нам нужны наши чувства? Все организмы способны ощутать свое окружение, но у животных и людей развиты несколько очень сложные сенсорные системы,

Аннотация рабочей программы дисциплины (модуля) «Нормальная физиология» по направлению 14.03.02 Ядерные физика и технологии (профиль Радиационная безопасность человека и окружающей среды) 1. Цели и задачи

Лекция 1 ОБЩАЯ ФИЗИОЛОГИЯ СЕНСОРНЫХ СИСТЕМ Объективная и субъективная сторона восприятия Специфичность сенсорных систем Закон специфических энергий Строение сенсорной системы Принципы организации сенсорных

Входная контрольная работа по биологии 9 класс 1 вариант 1. Кровь относится к типу тканей: А) соединительная Б) нервная В) эпителиальная Г) мышечная 2. К мышцам таза относятся А) ягодичные Б) икроножные

Тема урока: Чувствительность анализаторов. Взаимодействие анализаторов. Урок учителя биологии Бурмистровой Инны Евгеньевны Цели урока: продолжить формировать понятия органов чувств; повторить и обобщить

К пигментному слою изнутри примыкает слой фоторецепторов: палочек и колбочек. В сетчатке каждого глаза человека находится 6--7 млн колбочек и 110--123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещенностей, они обеспечивают дневное. и цветовое зрение; намного более светочувствительные палочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения -- так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении" колбочек возникает светобоязнь: человек видит при слабом" свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота -- ахромазия.

Строение фоторецепторной клетки. Фоторецепторная клетка -- палочка или колбочка -- состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, внутреннего сегмента, соединительной ножки, ядерной части с крупным ядром и пресинаптического окончания. Палочка и колбочка сетчатки обращены своими светочувствительными наружными сегментами к пигментному эпителию, т. е. в сторону, противоположную свету. У человека наружный сегмент фоторецептора (палочка или колбочка) содержит около тысячи фоторецепторных дисков. Наружный сегмент палочки намного длиннее, чем колбочки, и содержит больше зрительного пигмента. Это частично объясняет более высокую чувствительность палочки к свету: палочку может возбудить всего один квант света, а для активации колбочки требуется больше сотни квантов.

Фоторецепторный диск образован двумя мембранами, соединенными по краям. Мембрана диска -- это типичная биологическая мембрана, образованная двойным слоем молекул фосфолипидов, между которыми находятся молекулы белка. Мембрана диска богата полиненасыщенными жирными кислотами, что обусловливает ее низкую вязкость. В результате этого молекулы белка в ней быстро вращаются и медленно перемещаются вдоль диска. Это позволяет белкам часто сталкиваться и при взаимодействии образовывать на короткое время функционально важные комплексы.

Внутренний сегмент фоторецептора соединен с наружным сегментом модифицированной ресничкой, которая содержит девять пар микротрубочек. Внутренний сегмент содержит крупное ядро и весь метаболический аппарат клетки, в том числе митохондрии, обеспечивающие энергетические потребности фоторецептора, и систему белкового синтеза, обеспечивающую обновление мембран наружного сегмента. Здесь происходят синтез и включение молекул зрительного пигмента в фоторецепторную мембрану диска. За час на границе внутреннего и наружного сегмента в среднем заново образуется три новых диска. Затем они медленно перемещаются от основания наружного сегмента палочки к его верхушке, В конце концов верхушка наружного сегмента, содержащая до сотни теперь уже старых дисков, обламывается и фагоцитируется клетками пигментного слоя. Это один из важнейших механизмов защиты фоторецепторных клеток от накапливающихся в течение их световой жизни молекулярных дефектов.

Наружные сегменты колбочек также постоянно обновляются, но с меньшей скоростью. Интересно, что существует суточный ритм обновления: верхушки наружных сегментов палочек в основном обламываются и фагоцитируются в утреннее и дневное время, а колбочек -- в вечернее и ночное.

Пресинаптическое окончание рецептора содержит синаптическую ленту, вокруг которой много синаптических пузырьков, содержащих глутамат.

Зрительные пигменты. В палочках сетчатки человека содержится пигмент родопсин, или зрительный пурпур, максимум спектра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трех типов колбочек (сине-, зелено-и красно-чувствительных) содержится три типа зрительных пигментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) частях спектра. Красный колбочковый пигмент получил название «йодопсин». Молекула зрительного пигмента сравнительно небольшая (с молекулярной массой около 40 килодальтон), состоит из большей белковой части (опсина) и меньшей хромофорной (ретиналь, или альдегид витамина А).

Ретиналь может находиться в различных пространственных конфигурациях, т. е. изомерных формах, но только одна из них -- 11-цис-изомер ретиналя выступает в качестве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды, поэтому недостаток их приводит к дефициту витамина А и, как следствие, к недостаточному ресинтезу родопсина, что в свою очередь является причиной нарушения сумеречного зрения, или «куриной слепоты». Молекулярная физиология фоторецепции. Рассмотрим последовательность изменений молекул в наружном сегменте палочки, ответственных за ее возбуждение. При поглощении кванта света молекулой зрительного пигмента (родопсина) в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь выпрямляется и превращается в полностью транс-ретиналь. Эта реакция длится около 1 пс. Свет выполняет роль спускового, или триггерного, фактора, запускающего механизм фоторецепции. Вслед за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метародопсина II.

В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим белком -- примембранным гуанозинтрифосфат-связывающим белком трансдуцином (Т). В комплексе с метародопсином II трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте гуанозиндифосфат (ГДФ) на гуанозинтрифосфат (ГТФ). Метародопсин II способен активировать около 500--1000 молекул трансдуцина, что приводит к усилению светового сигнала.

Каждая активированная молекула трансдуцина, связанная с молекулой ГТФ, активирует одну молекулу другого примембранного белка -- фермента фосфодиэстеразы (ФДЭ). Активированная ФДЭ с высокой скоростью разрушает молекулы циклического гуа-нозинмонофосфата (цГМФ). Каждая активированная молекула ФДЭ разрушает несколько тысяч молекул цГМФ -- это еще один этап усиления сигнала в механизме фоторецепции. Результатом всех описанных событий, вызванных поглощением кванта света, становится падение концентрации свободного цГМФ в цитоплазме наружного сегмента рецептора. Это в свою очередь приводит к закрытию ионных каналов в плазматической мембране наружного сегмента, которые были открыты в темноте и через которые внутрь клетки входили Na+ и Са2+. Ионный канал закрывается вследствие того, что из-за падения концентрации свободного цГМФ в клетке от канала отходят молекулы цГМФ, которые были связаны с ним в темноте и держали его открытым.

Уменьшение или прекращение входа внутрь наружного сегмента Na+ приводит к гиперполяризации клеточной мембраны, т. е. возникновению на ней рецепторного потенциала. Градиенты концентрации Na+ и К+ поддерживаются на плазматической мембране палочки активной работой натрий-калиевого насоса, локализованного в мембране внутреннего сегмента.

Гиперполяризационный рецепторный потенциал, возникший на мембране наружного сегмента, распространяется затем вдоль клетки до ее пресинаптического окончания и приводит к уменьшению скорости выделения медиатора (глутамата). Таким образом, фоторецепторный процесс завершается уменьшением скорости выделения нейромедиатора из пресинаптического окончания фоторецептора.

Не менее сложен и совершенен механизм восстановления исходного темнового состояния фоторецептора, т. е. его способности ответить на следующий световой стимул. Для этого необходимо вновь открыть ионные каналы в плазматической мембране. Открытое состояние канала обеспечивается его связью с молекулами цГМФ, что в свою очередь непосредственно обусловлено повышением концентрации свободного цГМФ в цитоплазме. Это повышение концентрации обеспечивается утратой метародопсином II способности взаимодействовать с трансдуцином и активацией фермента гуанилатциклазы (ГЦ), способного синтезировать цГМФ из ГТФ. Активацию этого фермента вызывает падение концентра ции в цитоплазме свободного кальция из-за закрытия ионного канала мембраны и постоянной работы белка-обменника, выбрасывающего кальций из клетки. В результате всего этого концентрация цГМФ внутри клетки повышается и цГМФ вновь связывается с ионным каналом плазматической мембраны, открывая его. Через открытый канал внутрь клетки вновь начинают входить Na+ и Са2+, деполяризуя мембрану рецептора и переводя его в «темновое» состояние. Из пресинаптического окончания деполяризованного рецептора вновь ускоряется выход медиатора.

Нейроны сетчатки. Фоторецепторы сетчатки синаптически связаны с биполярными нейронами. При действии света уменьшается выделение медиатора (глутамата) из фоторецептора, что приводит к гиперполяризации мембраны биполярного нейрона. От него нервный сигнал передается на ганглиозные клетки, аксоны которых являются волокнами зрительного нерва. Передача сигнала как с фоторецептора на биполярный нейрон, так и от него на ганглиозную клетку происходит безымпульсным путем. Биполярный нейрон не генерирует импульсов ввиду предельно малого расстояния, на которое он передает сигнал.

На 130 млн фоторецепторных клеток приходится только 1 млн 250 тыс. ганглиозных клеток, аксоны которых образуют зрительный нерв. Это значит, что импульсы от многих фоторецепторов сходятся (конвергируют) через биполярные нейроны к одной ганглиозной клетке. Фоторецепторы, соединенные с одной ганглиозной клеткой, образуют рецептивное поле ганглиозной клетки. Рецептивные поля различных ганглиозных клеток частично перекрывают друг друга. Таким образом, каждая ганглиозная клетка суммирует возбуждение, возникающее в большом числе фоторецепторов. Это повышает световую чувствительность, но ухудшает пространственное разрешение. Лишь в центре сетчатки, в районе центральной ямки, каждая колбочка соединена с одной так называемой карликовой биполярной клеткой, с которой соединена также всего одна ганглиозная клетка. Это обеспечивает здесь высокое пространственное разрешение, но резко уменьшает световую чувствительность.

Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, через отростки которых распространяются сигналы, меняющие синаптическую передачу между фоторецепторами и биполярными клетками (горизонтальные клетки) и между биполярными и ганглиозными клетками (амакриновые клетки). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками.

Кроме афферентных волокон, в зрительном нерве есть и центробежные, или эфферентные, нервные волокна, приносящие к сетчатке сигналы из мозга. Полагают, что эти импульсы действуют на синапсы между биполярными и ганлиозными клетками сетчатки, регулируя проведение возбуждения между ними.

Нервные пути и связи в зрительной системе. Из сетчатки зрительная информация по волокнам зрительного нерва (II пара черепных нервов) устремляется в мозг. Зрительные нервы от каждого глаза встречаются у основания мозга, где формируется их частичный перекрест (хиазма). Здесь часть волокон каждого зрительного нерва переходит на противоположную от своего глаза сторону. Частичный перекрест волокон обеспечивает каждое полушарие большого мозга информацией от обоих глаз. Проекции эти организованы так, что в затылочную долю правого полушария поступают сигналы от правых половин каждой сетчатки, а в левое полушарие -- от левых половин сетчаток.

После зрительного перекреста зрительные нервы называют зрительными трактами. Они проецируются в ряд мозговых структур, но основное число волокон приходит в таламический подкорковый зрительный центр -- латеральное, или наружное, коленчатое тело (НКТ). Отсюда сигналы поступают в первичную проекционную область зрительной зоны коры (стиарная кора, или поле 17 по Бродману). Вся зрительная зона коры включает несколько полей, каждое из которых обеспечивает свои, специфические функции, но получает сигналы от всей сетчатки и в общем сохраняет ее топологию, или ретинотопию (сигналы от соседних участков сетчатки попадают в соседние участки коры).

Электрическая активность центров зрительной системы. Электрические явления в сетчатке и зрительном нерве. При действии света в рецепторах, а затем и в нейронах сетчатки генерируются электрические потенциалы, отражающие параметры действующего раздражителя.Суммарный электрический ответ сетчатки глаза на действие света называют электроретинограммой (ЭРГ). Она может быть зарегистрирована от целого глаза или непосредственно от сетчатки. Для этого один электрод помещают на поверхность роговой оболочки, а другой -- на коже лица вблизи глаза либо на мочку уха. На электроретинограмме различают несколько характерных волн. Волна а отражает возбуждение внутренних сегментов фоторецепторов (поздний рецепторный потенциал) и горизонтальных клеток. Волна b возникает в результате активации глиальных (мюллеровских) клеток сетчатки ионами калия, выделяющимися при возбуждении биполярных и амакриновых нейронов. Волна с отражает активацию клеток пигментного эпителия, а волна d -- горизонтальных клеток.

На ЭРГ хорошо отражаются интенсивность, цвет, размер и длительность действия светового раздражителя. Амплитуда всех волн ЭРГ увеличивается пропорционально логарифму силы света и времени, в течение которого глаз находился в темноте. Волна d (реакция на выключение) тем больше, чем дольше действовал свет. Поскольку в ЭРГ отражена активность почти всех клеток сетчатки (кроме ганглиозных), этот показатель широко используется в клинике глазных болезней для диагностики и контроля лечения при различных заболеваниях сетчатки.

Возбуждение ганглиозных клеток сетчатки приводит к тому, что по их аксонам (волокнам зрительного нерва) в мозг устрем ляются импульсы. Ганглиозная клетка сетчатки -- это первый нейрон «классического» типа в цепи фоторецептор -- мозг. Описано три основных типа ганглиозных клеток: отвечающие на включение (on-реакция), на выключение (off-реакция) света и на то и другое (on-off-реакция).

Диаметр рецептивных полей ганглиозных клеток в центре сетчатки значительно меньше, чем на периферии. Эти рецептивные поля имеют круглую форму и концентрически построены: круглый возбудительный центр и кольцевая тормозная периферическая зона или наоборот. При увеличении размера светового пятнышка, вспыхивающего в центре рецептивного поля, ответ ганглиозной клетки увеличивается (пространственная суммация). Одновременное возбуждение близко расположенных ганглиозных клеток приводит к их взаимному торможению: ответы каждой клетки делаются меньше, чем при одиночном раздражении. В основе этого эффекта лежит латеральное, или боковое, торможение. Рецептивные поля соседних ганглиозных клеток частично перекрываются, так что одни и те же рецепторы могут участвовать в генерации ответов нескольких нейронов. Благодаря круглой форме рецептивные поля ганглиозных клеток сетчатки производят так называемое поточечное описание сетчаточного изображения: оно отображается очень тонкой мозаикой, состоящей из возбужденных нейронов

Электрические явления в подкорковом зрительном центре и зрительной зоны коры. Картина возбуждения в нейронных слоях подкоркового зрительного центра -- наружного или латерального, коленчатого тела (НКТ), куда приходят волокна зрительного нерва, во многом сходна с той, которая наблюдается в сетчатке. Рецептивные поля этих нейронов также круглые, но меньшего размера, чем в сетчатке. Ответы нейронов, генерируемые в ответ на вспышку света, здесь короче, чем в сетчатке. На уровне наружных коленчатых тел происходит взаимодействие афферентных сигналов, пришедших из сетчатки, с эфферентными сигналами из зрительной области коры, а также через ретикулярную формацию от слуховой и других сенсорных систем. Эти взаимодействия обеспечивают выделение наиболее существенных компонентов сенсорного сигнала и процессы избирательного зрительного внимания.

Импульсные разряды нейронов наружного коленчатого тела по их аксонам поступают в затылочную часть полушарий большого мозга, где расположена первичная проекционная область зрительной зоны коры (стриарная кора, или поле 17). Здесь происходит значительно более специализированная и сложная, чем в сетчатке и в наружных коленчатых телах, переработка информации. Нейроны зрительной зоны коры имеют не круглые, а вытянутые (по горизонтали, вертикали или в одном из косых направлений) рецептивные поля небольшого размера. Благодаря этому они способны выделять из цельного изображения отдельные фрагменты линий с той или иной ориентацией и расположением (детекторы ориентации) и избирательно на них реагировать.

В каждом небольшом участке зрительной зоны коры по ее глубине сконцентрированы нейроны с одинаковой ориентацией и локализацией рецептивных полей в поле зрения. Они образуют колонку нейронов, проходящую вертикально через все слои коры. Колонка -- пример функционального объединения корковых нейронов, осуществляющих сходную функцию. Как показывают результаты исследований последних лет, функциональное объединение отдаленных друг от друга нейронов зрительной зоны коры может происходить также за счет синхронности их разрядов. Многие нейроны зрительной зоны коры избирательно реагируют на определенные направления движения (дирекциональные детекторы) либо на какой-то цвет, а часть нейронов лучше всего отвечает на относительную удаленность объекта от глаз. Информация о разных признаках зрительных объектов (форма, цвет, движение) обрабатывается параллельно в разных частях зрительной зоны коры большого мозга.

Для оценки передачи сигналов на разных уровнях зрительной системы часто используют регистрацию суммарных вызванных потенциалов (ВП), которые у животных можно одновременно отводить от всех отделов, а у человека -- от зрительной зоны коры с помощью наложенных на кожу головы электродов.

Сравнение вызванного световой вспышкой ответа сетчатки (ЭРГ) и ВП коры большого мозга позволяет установить локализацию патологического процесса в зрительной системе человека.

Зрительные функции. Световая чувствительность. Абсолютная чувствительность зрения. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел некоторую минимальную (пороговую) энергию. Минимальное число квантов света, необходимое для возникновения ощущения света, в условиях темнотой адаптации колеблется от 8 до 47. Рассчитано, что одна палочка может быть возбуждена всего 1 квантом света. Таким образом, чувствительность рецепторов сетчатки в наиболее благоприятных условиях световосприятия физически предельна. Одиночные палочки и колбочки сетчатки различаются по световой чувствительности незначительно, однако число фоторецепторов, посылающих сигналы на одну ганглиозную клетку, в центре и на периферии сетчатки различно. Число колбочек в рецептивном поле в центре сетчатки примерно в 100 раз меньше числа палочек в рецептивном поле на периферии сетчатки. Соответственно и чувствительность палочковой системы в 100 раз выше, чем колбочковой.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то