Прогормоны биохимия. Общие свойства гормонов

Реферат

БИОХИМИЯ ГОРМОНОВ

Гормоны – органические биологические вещества, вырабатываемые в эндокринных железах или клетках, транспортируемые кровью и оказывающие регуляторное действие на обменные процессы и физиологические функции.

Гормоны являются первичными посредниками между центральной нервной системой и тканевыми процессами. Термин гормоны 1905 году ввели ученые Бейлис и Старлинг. К эндокринным железам относится гипоталамус, гипофиз, эпифиз, тимус, щитовидная железа, паращитовидная железа, поджелудочная железа, надпочечники, половые железы и диффузная нейроэндокринная система. Единый принцип номенклатуры гормонов отсутствует. Их называют по месту образования (инсулин от insula -островок), по физиологическому эффекту (вазопрессин), гормоны передней доли гипофиза имеют окончание – тропин, окончание – либерин и – статин указывает на гипоталамические гормоны.

Классификация гормонов по их химической природе

По химической природе гормоны делят на 3 группы.

  1. Белково-пептидные гормоны.
  2. Простые белки (соматотропин, инсулин)
  3. Пептиды (кортикотропин, меланотропин, кальцитонин)
  4. Сложные белки (чаще гликопротеиды – тиреотропин, гонадотропин)
  5. Гормоны - производные отдельных аминокислот (тироксин, адреналин)
  6. Стероидные гормоны (производные холестерина – кортикостероиды, андрогены, эстрогены)

Химическая природа гормонов определяет особенности их метаболизма.

Обмен гормонов.

Синтез гормонов. Гормоны белковой природы синтезируются по законам трансляции. Гормоны - производные аминокислот синтезируются путём химической модификации аминокислот. Стероидные гормоны образуются путём химической модификации холестерина. Некоторые гормоны синтезируются в активной форме (адреналин), другие синтезируются в виде неактивных предшественников (препроинсулин). Некоторые гормоны могут активироваться за пределами эндокринной железы. Например, тестостерон в предстательной железе переходит в более активный дигидротестостерон. Синтез большинства гормонов регулируется по принципу обратной связи (авторегуляция)

Под действием импульсов ЦНС в гипоталамусе синтезируется либерины (кортиколиберин, тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин), которые активируют функцию передней доли гипофиза, и статины, тормозящие функцию передней доли гипофиза (соматостатин, пролактостатин, меланостатин). Либерины и статины регулируют выработку тропных гормонов передней доли гипофиза. Тропины передней доли гипофиза, в свою очередь, активируют функцию периферических эндокринных желез, которые вырабатывают соответствующие гормоны. Высокая концентрация гормонов тормозит либо выработку тропных гормонов, либо выработку либеринов (отрицательная обратная связь).

При нарушении регуляции синтеза гормонов может возникать либо гиперфункция, либо гипофункция.

Транспорт гормонов. Водорастворимые гормоны (белково-пептидные гормоны, гормоны - производные аминокислот (исключая тироксин)) транспортируются свободно в виде водных растворов. Водонерастворимые (тироксин, стероидные гормоны) транспортируются в комплексе с транспортными белками. Например, кортикостероиды транспортируются белком транскортином, тироксин - тироксинсвязывающим белком. Белковосвязанные формы гормона расцениваются как определённое депо гормонов. Концентрация гормонов в плазме крови очень мала, находится в диапазоне 10 -15 -10 -19 моль.

Циркулирующие в крови гормоны оказывают эффект на определенные ткани – мишени , в которых имеются рецепторы к соответствующим гормонам. Рецепторы чаще всего являются олигомерными гликопротеидами или липопротеидами. Рецепторы к различным гормонам могут располагаться или на поверхности клеток, или внутри клеток. Количество рецепторов, их активность может изменяться под действием различных факторов.

Катаболизм гормонов. Гормоны белковой природы распадаются до аминокислот, аммиака, мочевины. Гормоны - производные аминокислот инактивируются различными способами – дезаминирование, отщепление йода, окисление, разрыв кольца. Стероидные гормоны инактивируются путём окислительно-восстановительных превращений без разрыва стероидного кольца, путём реакции конъюгирования с серной кислотой и глюкуроновой кислотой.

Механизмы действия гормонов.

Различают несколько механизмов реализации гормонального сигнала для водорастворимых и водонерастворимых гормонов.

Все гормоны оказывают три конечных эффекта :

  1. изменение количества белков и ферментов за счёт изменения скорости их синтеза.
    1. изменение активности имеющихся в клетки ферментов
    2. изменение проницаемости клеточных мембран

Цитозольный механизм действия гидрофобных (липофильных) гормонов.

Липофильные гормоны способны проникать в клетку через клеточную мембрану, поэтому рецепторы для них располагаются внутриклеточно в цитозоле, на митохондриях, на поверхности ядра. Рецепторы гормонов чаще всего включают 2 домена: для связывания с гормоном и для связывания с ДНК. Рецептор при взаимодействии с гормоном изменяет свою структуру, освобождается от шаперонов, в результате чего гормон - рецепторный комплекс приобретает способность проникать внутрь ядра и взаимодействовать с определёнными участками ДНК. Это, в свою очередь, ведёт к изменению скорости транскрипции (синтез РНК), а вследствие этого меняется и скорость трансляции (синтез белка).

Мембранный механизм действия водорастворимых гормонов.

Водорастворимые гормоны не способны проникать через цитоплазматическую мембрану. Рецепторы для данной группы гормонов располагаются на поверхности клеточной мембраны. Поскольку гормоны не проходят внутрь клеток, между ними и внутриклеточными процессами необходим вторичный посредник, который передаёт гормональный сигнал внутрь клетки. В качестве вторичных посредников могут служить инозитолсодержащие фосфолипиды, ионы кальция, циклические нуклеотиды.

Циклические нуклеотиды - цАМФ, цГМФ - вторичные посредники

Гормон взаимодействует с рецептором и образует гормон - рецепторный комплекс, в котором меняется конформация рецептора. Это, в свою очередь, изменяет конформацию мембранного ГТФ - зависимого белка (G -белка) и ведёт к активации мембранного фермента аденилатциклазы, который переводит АТФ в цАМФ. Внутриклеточный циклический АМФ служит вторичным посредником. Он активирует внутриклеточные ферменты протеинкиназы, которые катализируют фосфорилирование различных внутриклеточных белков (ферментов, мембранных белков), что приводит к реализации конечного эффекта гормона. Эффект гормона «выключается» под действием фермента фосфодиэстеразы, разрушающей цАМФ, и ферментов фосфатаз, дефосфорилирующих белки.

Ионы кальция - вторичные посредники.

Взаимодействие гормона с рецептором повышает проницаемость кальциевых каналов клеточной мембраны, и внеклеточный кальций поступает в цитозоль. В клетках ионы Са 2+ взаимодействуют с регуляторным белком кальмодулином. Комплекс кальций-кальмодулин активирует кальцийзависимые протеинкиназы, которые активируют фосфолирирование различных белков и приводят к конечным эффектам.

Инозитолсодержащие фосфолипиды - вторичные посредники.

Образование гормон-рецепторного комплекса активирует в клеточной мембране фосфолипазу С, которая расщепляет фосфатидилинозит на вторичные посредники диацилглицерин (ДАГ) и инозитол-трифосфат (ИФ 3 ). ДАГ и ИФ 3 активируют выход Са 2+ из внутриклеточных депо в цитозоль. Ионы кальция взаимодействуют с кальмодулином, что активирует протеинкиназы и последующее фосфолирирование белков, сопровождающееся конечными эффектами гормона.

Краткая характеристика гормонов.

Белково-пептидные гормоны .

Гормоны гипофиза .

Гормонами передней доли гипофиза являются соматотропин, пролактин (простые белки), тиреотропин, фоллиторопин, лютропин (гликопротеиды), кортикотропин, липотропин (пептиды).

Соматотропин – белок, включающий около 200 аминокислот. Обладает выраженным анаболическим действием, активирует глюконеогенез, синтез нуклеиновых кислот, белков, в частности, коллагена, синтез гликозаминогликанов. Соматотропин вызывает гипергликемический эффект, усиливает липолиз.

Гипофункция у детей ведёт к гипофизарной карликовости (нанизм). Гиперфункция у детей сопровождается гигантизмом, а у взрослых акромегалиёй.

Пролактин - гормон белковой природы. Его продукция активируется в период лактации. Пролактин стимулирует: маммогенез, лактопоэз, эритропоэз

Фоллитропин – гликопротеид, определяет цикличность созревания фолликулов, выработку эстрогенов у женщин. В мужском организме он стимулирует сперматогенез.

Лютропин – гликопротеид, в женском организме способствует формированию желтого тела и выработке прогестерона, в мужском организме стимулирует сперматогенез и продукцию андрогенов.

Тиреотропин – гликопротеид, стимулирует развитие щитовидной железы, активирует синтез белков, ферментов.

Кортикотропин – пептид, включающий 39 аминокислот, активирует созревание надпочечников и выработку кортикостероидов из холестерина. Гиперфункция - синдром Иценко-Кушинга , проявляется гипергликемией, гипертензией, остеопорозом, перераспределением жиров с накоплением их на лице и груди.

Липотропин включает в свой состав около 100 аминокислот, стимулирует распад жиров, служит источником эндорфинов. Гиперфункция сопровождается гипофизарной кахексией, гипофункция - гипофизарным ожирением.

К гормонам средней доли гипофиза относится меланотропин (меланоцитостимулирующий гормон). Он является пептидом, стимулирует формирование меланоцитов и синтез в них меланинов, которые обладают фотопротекторным действием и являются антиоксидантами.

К гормонам задней доли гипофиза относятся вазопрессин (антидиуретический гормон) и окситоцин. Данные гормоны являются нейросекретами, они синтезируются в гипоталамических ядрах, а затем перемещаются в заднюю долю гипофиза. Оба гормона состоят из 9 аминокислот.

Вазопрессин регулирует водный обмен, усиливает в почках синтез белка аквапорина и реабсорбцию воды в почечных канальцах. Вазопрессин суживает сосуды и повышает артериальное давление. Недостаток гормона приводит к заболеванию несахарный диабет, проявляющийся резким увеличением диуреза.

Окситоцин стимулирует сокращение мускулатуры матки, сокращает гладкую мускулатуру молочных желез, усиливает отделения молока. Окситоцин активирует синтез липидов.

Гормоны паращитовидных желез

Гормонами паращитовидных желез являются паратгормон , кальцитонин , участвующие в регуляции кальций - фосфорного обмена.

Паратгормон – белок, включает в свой состав 84 аминокислоты, синтезируется в виде неактивного предшественника. Паратгормон повышает уровень кальция в крови и снижает содержание фосфора. Повышение уровня кальция в крови под действием паратгормона происходит благодаря его трём основным эффектам:

Усиливает «вымывание» кальция из костной ткани с одновременным обновлением органического матрикса кости,

Повышает задержку кальция в почках,

Вместе с витамином D 3 усиливает синтез в кишечнике кальций-связывающего белка и всасывание кальция из пищевых продуктов.

При гипофункции паратгормона наблюдается гипокальциемия, гиперфосфатемия, мышечные судороги, нарушение работы дыхательной мускулатуры.

При гиперфункции паратгормона наблюдаются гиперкальциемия, остеопороз, нефрокальциноз, фосфатурия.

Кальцитонин – пептид, включающий в свой состав 32 аминокислоты. В отношении кальциевого обмена он является антагонистом паратгормона, т.е. снижает уровень кальция и фосфора в крови в основном за счёт уменьшения резорбции кальция из костной ткани

Гормоны поджелудочной железы

В поджелудочной железе вырабатываются гормоны инсулин, глюкагон, а также соматостатин, панкреатический полипептид

Инсулин – белок, состоит из 51 аминокислоты, входящие в 2 полипептидные цепи. Он синтезируется в β - клетках островков в виде предшественника препроинсулина, а затем подвергается частичному протеолизу. Инсулин регулирует все виды обмена (белковый, липидный, углеводный), в целом оказывает анаболическое действие. Влияние инсулина на углеводный обмен проявляется в увеличении проницаемости тканей для глюкозы, активировании фермента гексокиназы, усилении использования глюкозы в тканях. Инсулин повышает окисление глюкозы, её использование на синтез белков, жиров, вследствие чего развивается гипогликемия. Инсулин активирует липогенез, тормозит липолиз, проявляет антикетогенное действие. Инсулин усиливает синтез белков и нуклеиновых кислот.

Гипофункция сопровождается развитием сахарного диабета, который проявляется гипергликемией, глюкозурией, ацетонурией, отрицательным азотистым балансом, полиурией, обезвоживанием организма (смотри также «Патология углеводного обмена»).

Глюкагон – гормон пептидной природы, состоит из 29 аминокислот, синтезируется в α - клетках островков поджелудочной железы. Он обладает гипергликемическим действием, в основном за счёт усиления фосфоролитического распада гликогена печени до глюкозы. Глюкагон активирует липолиз, активирует катаболизм белков.

Гормоны вилочкой железы

Тимус является органом лимфопоэза, тимопоэза и органом выработки гормонов, определяющих иммунные процессы в организме. Эта железа активна в детском возрасте, а к отрочеству происходит её инволюция. Основные гормоны вилочковой железы имеют пептидную природу. К ним относятся:

  • α,β – тимозины – определяют пролиферацию Т-лимфоцитов;
  • I, II-тимопоэтины – усиливают созревание Т-лимфоцитов, блокируют нервно - мышечную возбудимость;
  • тимусный гуморальный фактор – способствует дифференцировке Т-лимфоцитов на киллеры, хелперы, супрессоры;
  • лимфоцитостимулирующий гормон – усиливает образование антител;
  • тимусный гомеостатический гормон – является синергистом соматотропина и антагонистом кортикотропина и гонадотропина, и поэтому тормозит преждевременное половое созревание.

При гипофункции тимуса развиваются иммунодефицитные состояния. При гиперфункции возникают аутоиммунные заболевания.

Гормоны щитовидной железы

В щитовидной железе синтезируются тиреоидные гормоны трийодтиронин (Т 3 ), тироксин (Т 4 ) и пептидный гормон кальцитонин.

Синтез тиреоидных гормонов проходит несколько стадий:

  • поглощение I щитовидной железой за счет «йодного насоса»;
  • окисление иодидов в молекулярную форму при участии фермента йодидпероксидазы

2I - + 2Н*+Н 2 О 2 →I 2 .;

  • органификация йода – т.е. включение йода в состав аминокислоты тирозина, находящейся в тиреоглобулине щитовидной железы. (сначала образуется монойодтиронин, а затем дийодтиронин);
  • конденсация 2-х молекул дийодтиронина;
  • гидролиз Т 4 из тиреоглобулина.

Тиреоидные гормоны влияют на энергетический обмен, повышают потребление кислорода, синтез АТФ, для многочисленных биосинтетических процессов, для работы Na-К-насоса. В целом они активируют процессы пролиферации, дифференцировки, активируют гемопоэз, остеогенез. Их действие на углеводный обмен проявляется в развитии гипергликемии. Тиреоидные гормоны влияют на липидный обмен , активируя липолиз, β - окисление жирных кислот. Действие их на азотистый обмен состоит в активировании синтеза белков, ферментов, нуклеиновых кислот.

Гипофункция тиреоидных гормонов в детском возрасте приводит к развитию кретинизма , симптомами которого являются низкий рост, умственная отсталость. У взрослых людей гипофункция тиреоидных гормонов сопровождается микседемой – слизистым отёком, нарушением обмена гликозаминогликанов соединительной ткани и задержкой воды. При недостатке тиреоидных гормонов нарушаются энергетические процессы, развивается мышечная слабость, гипотермия. Эндемический зоб возникает при дефиците йода, отмечается разрастание железы и, как правило, гипофункция.

Гиперфункция проявляется как тиреотоксикоз (базедова болезнь) , симптомами которого являются истощение организма, гипертермия, гипергликемия, поражение сердечной мышцы, неврологическая симптоматика, пучеглазие (экзофтальм)

Аутоиммунный тиреоидит связан с образованием антител к рецепторам тиреоидных гормонов, компенсаторным увеличением синтеза гормонов щитовидной железой.

Гормоны мозгового слоя надпочечников (катехоламины)

К гормонам мозгового слоя надпочечников относятся адреналин, норадреналин – производные аминокислоты тирозина.

Адреналин влияет на углеводный обмен, вызывает гипергликемию, усиливая распад гликогена в печени до глюкозы. Адреналин влияет на жировой обмен , активирует липолиз, повышает концентрацию в крови свободных жирных кислот. Адреналин усиливает катаболизм белков . Адреналин оказывает влияние многие физиологические процессы: обладает вазотоническим (сосудосуживающим), кардиотоническим эффектом является гормоном стресса,

Норадреналин – в большей степени проявляет нейромедиаторный эффект.

Гиперпродукция катехоламинов наблюдается при феохромоцитоме (опухоль хромаффинных клеток)

Гормоны эпифиза

Эпифиз продуцирует гормоны мелатонин, адреногломерулотропин, эпиталамин

Мелатонин по химической природе является производным триптофана. Мелатонин регулирует синтез тканевых пигментов (меланинов), оказывает осветляющий эффект в ночное время суток и является антагонистом меланотропина гипофиза. Мелатонин влияет на дифференцировку клеток, оказывает противоопухолевое действие, стимулирует иммунные процессы, препятствует преждевременному половому созреванию. Вместе с эпиталамином (пептид) определяет биологические ритмы организма: выработку гонадотропных гормонов, суточные ритмы, сезонные ритмы.

Адреногломерулотропин (производное триптофана) активирует в надпочечниках выработку минералокортикоидов и, таким образом, регулирует водно-минеральный обмен.

Гормоны коры надпочечников

Гормоны коры надпочечников: глюкокортикоиды, минералокортикоиды, предшественники мужских половых гормонов относятся к стероидным гормонам, являющими производными спирта холестерина.

Глюкокортикоиды

Кортикостерон, кортизон и гидрокортизон (кортизол ) влияют на все виды обмена. Влияя на углеводный обмен , вызывают гипергликемию, активируют глюконеогенез. Глюкокортикоиды регулируют липидный обмен , усиливая липолиз на конечностях, активируя липогенез на лице и груди (появляется лунообразное лицо). Влияя на белковый обмен , глюкокортикоиды активирует распад белков в большинстве тканей, но усиливают синтез белков в печени. Глюкокортиоиды оказывает выраженное противовоспалительное действие, ингибируя фософолипазу А 2 и, вследствие этого, угнетая синтез эйкозаноидов. Глюкокортикоиды обеспечивают стресс-реакцию, а в больших дозах подавляют иммунные процессы.

Гиперфункция глюкокортикостероидов может быть гипофизарного происхождения или проявлением недостаточности выработки гормонов коркового слоя надпочечников. Она проявляется заболеванием Иценко-Кушинга . Гипофункция – болезнь Аддисона (бронзовая болезнь), проявляется сниженной сопротивляемостью организма, нередко гипертензией, гиперпигментацией кожи.

Минералокортикоиды

Дезоксикортикостерон, альдостерон регулируют водно-солевой обмен, способствует задержке натрия и выведению через почки калия и протонов.

При гиперфункции наблюдается гипертензия, происходит задержка воды, повышение нагрузки на сердечную мышцу, снижение уровня калия, развивается аритмия, алкалоз. Гипофункция ведёт к гипотонии, сгущению крови, нарушению работы почек, ацидозу.

Предшественники андрогенов

Предшественником андрогенов является дегидроэпиандростерон (ДЭПС). При его гиперпродукции возникает вирилизм, при котором у женщин формируется волосяной покров по мужскому типу. В тяжелой форме развивается адреногенитальный синдром.

Мужские половые гормоны (андрогены)

тестостерон

К андрогенам относятся андростерон, тестостерон , дигидротестостерон . Они влияют на все виды обмена, синтез белков, жиров, остеогенез, обмен фосфолипидов, определяют половую дифференцировку, поведенческие реакции, стимулируют развитие ЦНС. Гипофункция проявляется астеничной конституцией, инфантилизмом, нарушением формирования вторичных половых признаков.

Женские половые гормоны (эстрогены)

Эстрадиол

Эстрогенами являются эстрон, эстрадиол, эстриол . Они синтезируются из андрогенов путём ароматизации первого кольца. Эстрогены регулируют овариально-менструальный цикл, протекание беременности, лактации. Они активируют анаболические процессы (синтез белков, фосфолипидов, остеогенез), проявляют гипохолестеринемическое действие. Гипофункция ведёт к аменорее, остеопорозу.

Гормоны плаценты

В эмбриональном периоде плацента играет роль эндокринной железы. К гормонам плаценты относятся, в частности, хорионический соматотропин, хорионический гонадотропин, эстрогены, прогестерон, релаксин.

Обмен стероидных гормонов в эмбриональном периоде происходит в единой системе «мать-плацента-плод». Холестерин из организма матери поступает в плаценту, где преобразуется в прегненолон (предшественник стероидных гормонов). У плода прегненолон трансформируется в андрогены, которые поступают в плаценту. В плаценте из андрогенов синтезируются эстрогены, которые поступают в организм беременной женщины. Экскреция ею эстрогенов служит критерием протекания беременности.

Особенности гормонального статуса у детей

Сразу после рождения активируется функция гипофиза, коры надпочечников для обеспечения стрессовой реакции. Активация функции щитовидной железы и мозгового слоя надпочечников направлены на усиление липолиза, распад гликогена и на согревание организма. В этот период наблюдается некоторая гипофункция паращитовидной железы, гипокальциемия.

В первое время после рождения ребёнок получает некоторые гормоны в составе грудного молока. В первые дни после рождения может развиваться половой криз, связанный с отсутствием эффекта половых гормонов матери. Он проявляется нагрубанием молочных желез, появлением жировых точек, гнойничков, отёком половых органов.

В дошкольном возрасте активируется щитовидная, вилочковая железа, эпифиз, гипофиз.

К периоду полового созревания эпифиз и тимус подвергаются инволюции, заметно активируется выработка гонадотропных и половых гормонов.

Литература

РАН, Всероссийский ин-т научной и технической информации; Сост.: Е.С. Панкратова, В.К. Финн; Под общ. ред. В.К. Финна: Автоматическое порождение гипотез в интеллектуальных системах. - М.: ЛИБЕРКОМ, 2009

РАН, Общество биохимиков и молекулярных биологов, Институт биохимии им. А.Н. Баха; отв. ред. Л.П. Овчинников: Успехи биологической химии. - Пущино: ОНТИ ПНЦ РАН, 2009

: Молчание генов. - Пущино: ОНТИ ПНЦ РАН, 2008

Зурабян С.Э.: Номенклатура природных соединений. - М.: ГЭОТАР-Медиа, 2008

Комов В.П.: Биохимия. - М.: Дрофа, 2008

под ред. Е.С. Северина; рец.: А.А. Терентьев, Н.Н. Чернов: Биохимия с упражнениями и задачами. - М.: ГЭОТАР-Медиа, 2008

Под ред.: Д.М. Зубаирова, Е.А. Пазюк; Рец.: Ф.Н. Гильмиярова, И.Г. Щербак: Биохимия. - М.: ГЭОТАР-Медиа, 2008

Сотников О.С.: Статика и структурная кинетика живых асинаптических дендритов. - СПб.: Наука, 2008

Тюкавкина Н.А.: Биоорганическая химия. - М.: Дрофа, 2008

Александровская Е.И.: Антропохимия. - М.: Класс-М, 2007

ФГБОУ ВО УГМУ Минздрава России
Кафедра биохимии
Дисциплина: Биохимия
ЛЕКЦИЯ № 14
Регуляторные системы организма.
Биохимия эндокринной системы
Лектор: Гаврилов И.В.
Факультеты: лечебно-профилактический,
педиатрический
Курс: 2
Екатеринбург, 2016г

ПЛАН ЛЕКЦИИ

1. Регуляторные системы организма.
Уровни и принципы организации.
2. Гормоны. Определение понятия. Особенности
действия.
3. Классификация гормонов: по месту синтеза и
химической природе, свойствам.
4. Основные представители гормонов
5. Этапы метаболизма гормонов.

Основные свойства живых организмов
1. Единство химического состава.
2. Обмен веществ и энергии
3. Живые системы – открытые системы: используют внешние
источники энергии в виде пищи, света и т. п.
4. Раздражимость - способность живых систем реагировать
на внешние или внутренние воздействия (изменения).
5. Возбудимость - способность живых систем отвечать на
действие раздражителя.
6. Движение, способность к перемещению.
7. Размножение, обеспечивающее непрерывность жизни в
ряду поколений
8. Наследственность
9. Изменчивость
10.Живые системы – самоуправляющиеся,
саморегулирующиеся, самоорганизующиеся системы

Живые организмы способны поддерживать
постоянство внутренней среды - гомеостаз.
Нарушение гомеостаза приводит к болезни или
смерти.
Показатели гомеостаза млекопитающих
Регуляция рН
Регуляция водно-солевого обмена.
Регуляция концентрации веществ в организме
Регуляция обмена веществ
Регуляция скорости энергетического обмена
Регуляция температуры тела.

Гомеостаз в организме поддерживается за счет регуляции скорости ферментативных реакций, за счет изменения: I). Доступности молекул субстра

Гомеостаз в организме поддерживается за счет
регуляции скорости ферментативных реакций, за
счет изменения:
I). Доступности молекул субстрата и кофермента;
II). Каталитической активности молекул фермента;
III). Количества молекул фермента.
E*
S
S
Кофермент
Витамин
Клетка
P
P

В многоклеточных организмах в поддержании
гомеостаза участвуют 3 системы:
1). Нервная
2). Гуморальная
3). Иммунная
Регуляторные системы функционируют с участием
сигнальных молекул.
Сигнальные молекулы – это органические
вещества, которые переносят информацию.
Для передачи сигнала:
А). ЦНС использует нейромедиаторы (регулирует физиологические
функции и работу эндокринной системы)
Б). Гуморальная система использует гормоны (регулирует
метаболические и физиологические процессы, пролиферацию,
дифференцировку клеток и тканей)
В). Иммунная система использует цитокины (защищает организм от
внешних и внутренних патогенных факторов, регулирует иммунные
и воспалительные реакции, пролиферацию, дифференцировку
клеток, работу эндокринной системы)

Сигнальные молекулы
Неспецифические факторы: рН, t
Специфические факторы: Сигнальные молекулы
Фермент
Субстрат
Продукт

Внешние и внутренние факторы
ЦНС
Системы регуляции образуют
3 иерархических уровня
I.
нейромедиаторы
Гипоталамус
релизинг гормоны
либерины статины
Гипофиз
II.
тропные гормоны
Эндокринные железы
гормоны
Ткани мишени
III.
S
E
P
Первый уровень - ЦНС. Нервные клетки
получают сигналы из внешней и внутренней
среды, преобразуют их в форму нервного
импульса
и
передают
через
синапсы,
используя
нейромедиаторы,
которые
вызывают
изменения
метаболизма
в
эффекторных клетках.
Второй уровень - эндокринная система.
Включает
гипоталамус,
гипофиз,
периферические эндокринные железы, а также
отдельные
клетки
(АПУД
система),
синтезирующие
под
влиянием
соответствующего стимула гормоны, которые
через кровь действуют на ткани-мишени.
Третий уровень - внутриклеточный. На
метаболические процессы в клетке влияют
субстраты и продукты обмена веществ, а также
тканевые гормоны (аутокринно).

Принципы организации нейроэндокринной системы
В основе работы нейроэндокринной системы лежит
принцип прямой, обратной, положительной и отрицательной
связи.
1. Принцип прямой положительной связи – активация
текущего звена системы приводит к активации следующего
звена системы, распространению сигнала в сторону клетокмишеней и возникновению метаболических или
физиологических изменений.
2. Принцип прямой отрицательной связи – активация
текущего звена системы приводит к подавлению следующего
звена системы и прекращению распространения сигнала в
сторону клеток-мишеней.
3. Принцип обратной отрицательной связи – активация
текущего звена системы вызывает подавление предыдущего
звена системы и прекращение его стимулирующего влияния на
текущую систему.
Принципы прямой положительной и обратной отрицательной связи
являются основой для поддержания гомеостаза.

10.

4. Принцип обратной положительной связи –
активация текущего звена системы вызывает
стимуляцию предыдущего звена системы. Основа
циклических процессов.
ГИПОТАЛАМУС
Гонадотропинрелизинг гормон
ГИПОФИЗ
ФСГ
ФОЛЛИКУЛ
Эстрадиол

11.

Гормоны
Термин гормон (hormao - возбуждаю, пробуждаю) введено в 1905
г. Бейлисом и Старлингом для выражения активности секретина.
Гормоны – органические сигнальные молекулы
беспроводного системного действия.
1. Синтезируются в эндокринных железах,
2. транспортируются кровью
3. действуют на ткани мишени (гормоны щитовидной
железы, надпочечников, поджелудочной железы и т.д).
Всего известно более 100 гормонов.

12.

Ткань мишень – ткань, в которой гормон вызывает
специфическую биохимическую или
физиологическую реакцию.
Клетки тканей мишеней для взаимодействия с
гормоном синтезируют специальные рецепторы,
количество и тип которых определяет
интенсивность и характер ответа.
В организме около 200 типов дифференцированных
клеток, лишь некоторые из них продуцируют
гормоны, но все являются мишенями для
действия гормонов.

13.

Особенности действия гормонов:
1. Действуют в малых количествах (10-6-10-12 ммоль/л);
2. Существует абсолютная или высокая специфичность в
действии гормонов.
3. Переносят только информацию. Не используются в
энергетических и строительных целях;
4. Действуют опосредованно через каскадные системы,
(аденилатциклазную, инозитолтрифосфатную и др.
системы) взаимодействуя с рецепторами;
5. Регулируют
активность,
количество
белков
(ферментов), транспорт веществ через мембрану;
6. Зависят от ЦНС;
7. Беспороговый принцип. Даже 1 молекула гормона
способна оказать эффект;
8. Конечный эффект - результат действия множества
гормонов.

14.

Каскадные системы
Гормоны регулируют количество и каталитическую
активность ферментов не напрямую, а
опосредовано через каскадные системы
Гормоны
Каскадные системы
Ферменты
х 1000000
Каскадные системы:
1. Многократно усиливают сигнал гормона (повышают
количество или каталитическую активность фермента) так
что 1 молекула гормона способна вызвать изменение
метаболизма в клетке
2. Обеспечивают проникновение сигнала в клетку
(водорастворимые гормоны в клетку самостоятельно не
проникают)

15.

каскадные системы состоят из:
1. рецепторов;
2. регуляторных белков (G-белки, IRS, Shc, STAT и т.д.).
3. вторичных посредников (messenger - посыльный)
(Са2+, цАМФ, цГМФ, ДАГ, ИТФ);
4. ферментов (аденилатциклаза, фосфолипаза С,
фосфодиэстераза, протеинкиназы А, С, G,
фосфопротеинфосфотаза);
Виды каскадных систем:
1. аденилатциклазная,
2. гуанилатциклазная,
3. инозитолтрифосфатная,
4. RAS и т.д.),

16.

Гормоны оказывают как системное, так и местное
действие:
1. Эндокринное (системное) действие гормонов
(эндокринный эффект) реализуется, когда они
транспортируются кровью и действуют на органы и
ткани всего организма. Характерно для истинных
гормонов.
2. Местное действие гормонов реализуется, когда они
действуют
на
клетки,
в
которых
были
синтезированы (аутокринный эффект), или на
соседние
клетки
(паракринный
эффект).
Характерно для истинных и тканевых гормонов.

17. Классификация гормонов

А. По химическому строению:
1.Пептидные гормоны
Рилизинг-гормоны гипоталамуса
Гормоны гипофиза
Паратгормон
Инсулин
Глюкагон
Кальцитонин
2.Стероидные гормоны
Половые гормоны
Кортикоиды
кальцитриол
3.Производные аминокислот (тирозин)
Тиреоидные гормоны
Катехоламины
4. Эйкозаноиды - производные арахидоновой кислоты
(гормоноподобные вещества)
Лейкотриены, Тромбоксаны, Простагландины, Простациклины

18.

Б. По месту синтеза:
1. Гормоны гипоталамуса
2. Гормоны гипофиза
3. Гормоны поджелудочной железы
4. Гормоны паращитовидной железы
5. Гормоны щитовидной железы
6. Гормоны надпочечников
7. Гормоны гонад
8. Гормоны ЖКТ
9. и т.д

19.

В. По биологическим функциям:
Регулируемые процессы
Гормоны
Обмен углеводов, липидов, Инсулин, глюкагон, адреналин,
аминокислот
тироксин, соматотропин
Водно-солевой обмен
кортизол,
Альдостерон, антидиуретический гормон
Обмен кальция и фосфатов Паратгормон, кальцитонин, кальцитриол
Репродуктивная функция
Синтез
гормонов
желёз
и
Эстрадиол,
тестостерон,
гонадотропные гормоны
секреция Тропные гормоны гипофиза,
эндокринных статины гипоталамуса
прогестерон,
либерины
и
Изменение метаболизма в Эйкозаноиды, гистамин, секретин, гастрин,
клетках, синтезирующих соматостатин, вазоактивный интестинальный
гормон
пептид (ВИП), цитокины

20. Гормоны гипоталамуса и гипофиза

Основные гормоны
Гормоны гипоталамуса и гипофиза

21. Гормоны Гипоталамуса

Релизинг гормоны - поддерживают базальный уровень
и физиологические пики продукции тропных гормонов
гипофиза и нормальное функционирование
периферических желёз внутренней секреции
Релизинг-факторы
(гормоны)
Либерины
Активация секреции
тропных гормонов
Статины
Ингибирование секреции
тропных гормонов

22.

Тиреотропин релизинг гормон (ТРГ)
Трипептид: ПИРО-ГЛУ-ГИС-ПРО-NH2
CO NH CH CO N
CH2
C
O
C
O
N
H
Стимулирует секрецию: Тиреотропного гормона (ТТГ)
Пролактина
Соматотропина
NH2

23.

Гонадотропин релизинг гормон (ГРГ)
Декапептид:
ПИРО-ГЛУ-ГИС-ТРП-СЕР-ТИР-ГЛИ-ЛЕЙ-АРГ-ПРО-ГЛИ-NH2
Стимулирует секрецию: Фоликулостимулирующего гормона
Лютеинезирующего гормона
Кортикотропин релизинг гормон (КРГ)
Пептид 41 амино-кислотный остаток.
Стимулирует секрецию: вазопрессина
окситоцина
катехоламинов
ангиотензина-2

24.

Соматостанин релизинг гормон (СРГ)
Пептид 44 аминокислотных остатка
ингибирует секрецию соматотропина
Соматотропин ингибирующий гормон (СИГ)
Тетрадекопептид (14 аминокислотных остатка)
АЛА-ГЛИ-ЦИС-ЛИЗ-АСН-ФЕН-ФЕН-ТРП-ЛИЗ-ТРЕ-ФЕН-ТРЕ-СЕР-ЦИС-NH2
S
S
Ингибируют секрецию: гормона роста, инсулина, глюкагона.
Меланотропин релизинг гормон
Меланотропин ингибирующий гормон
Регулируют секрецию меланостимулирующего гормона

25.

Гормоны гипофиза
Передняя доля гипофиза
1 Соматомаммотропины:
- гормон роста
- пролактин
- хорионический соматотропин
2 Пептиды:
- АКТГ
- -липотропин
- энкефалины
- эндорфины
- меланостимулирующий гормон
ПОМК
3 Гликопротеиновые гормоны: - тиреотропин
- лютеинезирующий гормон
- фоликулостимулирующий гормон
- хорионический гонадотропин

26.

Задняя доля гипофиза
Вазопрессин
Н-ЦИС-ТИР-ФЕН-ГЛН-АСН-ЦИС-ПРО-АРГ-ГЛИ-CO-NH2
S
S
Синтезируется супраоптическим ядром гипоталамуса
Концентрация в крови 0-12 пг/мл
Выброс регулируется кровопотерей
Функции: 1) стимулирует реабсорбцию воды
2) стимулирует глюконеогенез, гликогенолиз
3) сужает сосуды
4) является компонентом стрессорной реакции

27.

Окситоцин
Н-ЦИС-ТИР-ИЛЕ-ГЛН-АСН-ЦИС-ПРО-ЛЕЙ-ГЛИ-СО-NH2
S
S
Синтезируется паравентрикулярным ядром гипоталамуса
Функции: 1) стимулирует секрецию молока молочными железами
2) стимулирует сокращения матки
3) релизинг фактор для выброса пролактина

28. Основные стероидные гормоны

Гормоны периферических желез
Основные стероидные гормоны
CH2OH
С O
CH3
С O
HO
O
O
Прогестерон
HO
Кортикостерон
CH2OH
С O
OH
O CH2OH
HC С O
HO
O
O
Кортизол
Альдостерон

29.

Тестостерон
Эстрадиол

30.

Яичники
Яички
Плацента
Надпочечники

31. Производные аминокислот

Тирозин
Трийодтиронин
Адреналин
Тироксин

32.

Гастроинтестинальные
(кишечные) гормоны
4. Другие пептиды
1. Семейство гастрин-холецистокинин
-соматостатин
-гастрин
-нейротензин
-холецистокинин
-мотилин
2. Семейство секретин-глюкагона
-вещество Р
-секретин
-панкреостатин
-глюкагон
-желудочно-ингибирующий пектид
-вазоактивный интестинальный пептид
-пептид гистидин-изолейцин
3. Семейство РР
-панкреотический полипептид
-пептид YY
-нейропептид Y

33. Этапы метаболизма гормонов

1.
2.
3.
4.
5.
6.
7.
Синтез
Активация
Хранение
Секреция
Транспорт
Действие
Инактивация
Пути обмена гормонов зависят от их природы

34. Метаболизм пептидных гормонов

35. Синтез, активация, хранение и секреция пептидных гормонов

ДНК
Экзон
Интрон
Экзон
Интрон
транскрипция
Пре м-РНК
процессинг
м-РНК
Рибосомы
Сигнальный
пептид
ШЭР
Цитоплазматическая мембрана
Ядро
трансляция
препрогормон
Комплекс
Гольджи
Протеолиз,
гликозилирование
прогормон
Активный гормон
Секреторные
пузырьки
Сигнальные
молекулы
АТФ

36.

37.

Транспорт пептидных гормонов осуществляется в
свободном виде (водорастворимы) и в комплексе с
белками.
Механизм действия. Пептидные гормоны
взаимодействуют с мембранными рецепторами и через
систему внутриклеточных посредников регулируют
активность ферментов, что влияет на интенсивность
метаболизма в тканях мишенях.
В меньшей степени пептидные гормоны регулируют
биосинтез белка.
Механизм действия гормонов (рецепторы, посредники)
рассмотрен в разделе ферменты.
Инактивация. Гормоны инактивируются гидролизом до
АК в тканях мишенях, печени, почках и т.д. Время
полураспада инсулина, глюкагона Т½ = 3-5мин, у СТГ
Т½= 50 мин.

38.

Механизм действия белковых гормонов
(аденилатциклазная система)
Белковый
гормон
АТФ
Протеинкиназа
АЦ
цАМФ
Протеинкиназа (акт)
Фосфорилирование
Е (неакт)
Е (акт)
Субстрат
Продукт

39. Метаболизм стероидных гормонов

40.

1. Синтез гормонов происходит из холестерина в
гладком ЭПР и митохондриях коры надпочечников,
гонадах, коже, печени, почках. Превращение стероидов
состоит в отщеплении алифатической боковой цепи,
гидроксилировании, дегидрировании, изомеризации, либо
в ароматизации кольца.
2. Активация. Стероидные гормоны часто образуются
уже в активном виде.
3. Хранение. Синтезированные гормоны накапливаются
в цитоплазме в комплексе со специальными белками.
4. Секреция стероидных гормонов происходит пассивно.
Гормоны переходят с цитоплазматических белков в
клеточную мембрану, откуда их забирают транспортные
белки крови.
5. Транспорт. Стероидные гормоны, т.к. они
водонерастворимы, переносятся в крови преимущественно
в комплексе с транспортными белками (альбумины).

41. Синтез кортикоидных гормонов

Прогестерон
17ά
оксипрогестерон
21
дезоксикортизол
Прегненолон
Холестерин
17ά
17ά ,21
11
оксипрегненолон диоксипрегненолон дезоксикортизол
11β
оксипрегненолон
21
оксипрегненолон
кортизол
кортизон
11β
оксипрогестерон
11β,21
диоксипрегненолон
кортикостерон
дезоксикортико
стерон
18
оксипрегненолон
18
оксидезоксикорти
костерон
18
оксикортикостерон
альдостерон

42.

Механизм действия стероидных гормонов
ДНК
Циторецептор
G
R
G R
Ионы
Глюкоза
АК
R
И - РНК
Активированный
гормон – рецепторный
комплекс
Синтез белка

43.

Инактивация. Стероидные гормоны инактивируются
так
же
как
и
ксенобиотики
реакциями
гидроксилирования и конъюгации в печени и тканях
мишенях. Инактивированные производные выводятся
из организма с мочой и желчью. Период полураспада в
крови обычно больше пептидных гормонов. У
кортизола Т½ = 1,5-2 часа.

44. МЕТАБОЛИЗМ КАТЕХОЛАМИНОВ Симпато-адреналовая ось

1. Синтез. Синтез катехоламинов происходит в цитоплазме и гранулах
клеток мозгового слоя надпочечников. Катехоламины сразу образуются в
активной форме. Норадреналин образуется в основном в органах,
иннервируемых симпатическими нервами (80% от общего количества).
норадреналин
OH
OH
О2 Н2О
OH
Fe2+
CH 2
HC
COOH
Тир
OH
OH О2 Н2О
HC
Cu2+
CH 2
NH 2
COOH
H2C
NH 2
дофамин
OH
OH
OH
OH
вит. С
B6
CH 2
NH 2
СО2
3SAM 3SAГ
HC
ОН
HC
H2C
NH 2
H2C
норадреналин
ДОФА

ОН
N+Н-СН
(CH 3)33
адреналин
метилтрансфераза

45.

2. Хранение катехоламинов происходит в секреторных гранулах.
Катехоламины поступают в гранулы путём АТФ-зависимого транспорта и
хранятся в них в комплексе с АТФ в соотношении 4:1 (гормон-АТФ).
3. Секреция гормонов из гранул происходит путём экзоцитоза. В
отличие от симпатических нервов, клетки мозгового слоя надпочечников
лишены механизма обратного захвата выделившихся катехоламинов.
4. Транспорт. В плазме крови катехоламины образуют непрочный
комплекс с альбумином. Адреналин транспортируется в основном к
печени и скелетным мышцам. Норадреналин лишь в незначительных
количествах достигает периферических тканей.
5. Действие гормонов. Катехоламины регулируют активность
ферментов, они действуют через цитоплазматические рецепторы.
Адреналин через α-адренергические и β-адренергические рецепторы,
норадреналин – через α-адренергические рецепторы. Через β-рецепторы
активируется аденилатциклазная система, через α2-рецепторы
ингибируется. Через α1-рецепторы активируется инозитолтрифосфатная
система. Эффекты катехоламинов многочисленны и затрагивают
практически все виды обмена.
7. Инактивация. Основная часть катехоламинов быстро
метаболизируется в различных тканях при участии специфических
ферментов.

46. МЕТАБОЛИЗМ ТИРЕОИДНЫХ ГОРМОНОВ Гипоталамо-гипофизарно-тиреоидная ось

Синтез тиреоидных гормонов (йодтиронины: 3,5,3"трийодтиронин
(трийодтиронин,
Т3)
и
3,5,3",5"тетрайодтиронин (Т4, тироксин)) происходит в клетках и
коллоиде щитовидной железе.
1. В тиреоцитах (в фолликулах) синтезируется белок
тиреоглобулин. (+ ТТГ) Это гликопротеин с массой 660 кД,
содержащий 115 остатков тирозина, 8-10% его массы
приходиться на углеводы.
Сначала
на
рибосомах
ЭПР
синтезируется
претиреоглобулин, который в ЭПР формирует вторичную и
третичную структуру, гликозилируется и превращается в
тиреоглобулин. Из ЭПР тиреоглобулин поступает в аппарат
Гольджи, где включается в секреторные гранулы и
секретируется во внеклеточный коллоид.

47.

2. Транспорт йода в коллоид щитовидной железы. Йод в
виде органических и неорганических соединений поступает
в ЖКТ с пищей и питьевой водой. Суточная потребность в
йоде 150-200 мкг. 25-30% этого количества йодидов
захватывается щитовидной железой. I- поступает в клетки
щитовидной железы активным транспортом при участии
йодид-переносящего белка симпортом с Nа+. Далее Iпассивно по градиенту поступает в коллоид.
3. Окисление йода и йодирование тирозина. В коллоиде
при участии гемсодержащей тиреопероксидазы и Н2О2 Iокисляется в I+, который йодирует остатки тирозина в
тиреоглобулине с образованием монойодтирозинов (МИТ)
и дийодтирозинов (ДИТ).
4. Конденсация МИТ и ДИТ. Две молекулы ДИТ
конденсируются с образованием йодтиронина Т4, а МИТ и
ДИТ - с образованием йодтиронина Т3.

48.

49.

2. Хранение. В составе йодтиреоглобулина тиреоидные
гормоны накапливаются и хранятся в коллоиде.
3. Секреция. Йодтиреоглобулин фагоцитируется из
коллоида в фолликулярную клетку и гидролизуется в
лизосомах с освобождением Т3 и Т4 и тирозина и других АК.
Аналогично стероидным гормонам, водонерастворимые
тиреоидные гормоны в цитоплазме связываются со
специальные белками, которые переносят их в состав
клеточной мембраны. В норме щитовидная железа
секретирует 80-100 мкг Т4 и 5 мкг Т3 в сутки.
4. Транспорт. Основная часть тиреидных гормонов
транспортируется в крови в связанной с белками форме.
Основным транспортным белком йодтиронинов, а также
формой их депонирования служит тироксинсвязывающий
глобулин (ТСГ). Он обладает высоким сродством к Т3 и Т4 и
в нормальных условиях связывает почти всё количество
этих гормонов. Только 0,03% Т4 и 0,3% Т3 находятся в крови
в свободной форме.

50.

БИОЛОГИЧЕСКИЕ ЭФФЕКТЫ
Трийодтиронин и тироксин связываются с ядерным рецептором клеток-мишений
1. На основной обмен. являются разобщителями биологического окисления тормозят образование АТФ. Уровень АТФ в клетках снижается и организм
отвечает повышением потребления О2, усиливается основной обмен.
2. На углеводный обмен:
- повышает всасывание глюкозы в ЖКТ.
- стимулирует гликолиз, пентозофосфатный путь окисления.
- усиливает распад гликогена
- повышает активность глюкозы-6-фосфатазы и др. ферментов
3.На обмен белка:
- индуцируют синтез (как и стероиды)
- обеспечивают положительный азотистый баланс
- стимулируют транспорт аминокислот
4.На липидный обмен:
- стимулируют липолиз
- усиливают окисление жирных кислот
- тормозят биосинтез холестерина
_

51.

Инактивация
йодтиронинов
осуществляется
в
периферических тканях в результате дейодирования Т4 до
«реверсивной» Т3 по 5, полного дейодирования,
дезаминирования
или
декарбоксилирования.
Йодированные продукты катаболизма йодтиронинов
конъюгируют в печени с глюкуроновой или серной
кислотами, секретируются с жёлчью, в кишечнике вновь
всасываются, дейодируются в почках и выделяются с
мочой. Для Т4 Т½ =7 дней, для Т3 Т½ =1-1,5 дня.

52. ЛЕКЦИЯ № 15

ГБОУ ВПО УГМУ Минздрава РФ
Кафедра биохимии
Дисциплина: Биохимия
ЛЕКЦИЯ № 15
Гормоны и адаптация
Лектор: Гаврилов И.В.
Факультет: лечебно-профилактический,
Курс: 2
Екатеринбург, 2016г

53. План лекции

1. Стресс – как общий адаптационный
синдром
2. Стадии стресс-реакций: характеристика
метаболических и биохимических
изменений.
3. Роль гипофизарно-надпочечниковой
системы, катехоламинов, СТГ, инсулина,
гормонов щитовидной железы, половых
гормонов в реализации адаптивных
процессов в организме.

54.

Адаптация (от лат. аdaptatio)приспособление организма к условиям
существования.
Цель адаптации - устранение или
ослабление вредного действия
факторов окружающей cреды:
1. биологических,
2. физических,
3. химических,
4. социальных.

55. Адаптация

НЕСПЕЦИФИЧЕСКАЯ
Обеспечивает
активизацию
защитных систем
организма, для
адаптации к любому
фактору среды.
СПЕЦИФИЧЕСКАЯ
Вызывает изменения в
организме,
направленные на
ослабление или
устранение действия
конкретного
неблагоприятного
фактора.

56. 3 вида адаптационных реакций

1. реакция на слабые воздействия –
реакция тренировки (по Гаркави,
Квакиной, Уколовой)
2. реакция на воздействия средней
силы – реакция активации (по
Гаркави, Квакиной, Уколовой)
3. реакция на сильные, чрезвычайные
воздействия – стресс-реакция (по Г.
Селье)

57.

Впервые представление о стрессе
(от англ. stress - напряжение)
сформулировал
канадский
ученый Ганс Селье в 1936г (19071982 г.г.).
Вначале
для
обозначения
стресса использовался термин
общий адаптационный синдром
(ОАС).
Термин
«стресс»
стали
использовать позднее.
Стресс
особое состояние организма
человека и млекопитающих, возникающее
в ответ на сильный внешний раздражитель стрессор
-

58.

Стрессор (синонимы: стресс-фактор, стрессситуация) - фактор, вызывающий состояние
стресса.
1. Физиологический (чрезмерная боль, сильный шум,
воздействие экстремальных температур)
2. Химический (прием ряда лекарственных препаратов,
например, кофеина или амфетаминов)
3. Психологический
(информационная
перегрузка,
соревнование,
угроза
социальному
статусу,
самооценке, ближайшему окружению и др.)
4. Биологический (инфекции)

59.

Классическая триада ОАС:
1. разрастание коры
надпочечников;
2. уменьшение вилочковой
железы (тимус);
3. изъязвление желудка.

60. Механизмы, повышающие адаптационные возможности организма к стрессору при ОАС:

Мобилизации энергетических ресурсов (Повышение
уровня глюкозы, жирных кислот, аминокислот и
кетоновых тел)
Увеличение эффективности внешнего
дыхания.
Усиление и централизация кровоснабжения.
Увеличение свертывающей способности крови
Активация работы ЦНС (улучшение внимания, памяти,
сокращение времени реакции и т.д.).
Снижение чувства боли.
Подавление воспалительных реакций.
Снижение пищевого поведения и полового влечения.

61. Негативные проявления ОАС:

Подавление иммунитета (кортизол).
Нарушение репродуктивной функции.
Нарушение пищеварения (кортизол).
Активация ПОЛ (адреналин).
Деградация тканей (кортизол, адреналин).
Кетоацидоз, гиперлипидемия,
гиперхолестеринемия.

62. Стадии изменения адаптационных возможностей организма при стрессе

Уровень
резистентности
1 – фаза тревоги
А – шока
Б - противошока
2 – фаза резистентности
3 – фаза истощения
или адаптации
стрессор
2
1
А
Б
3
Болезни адаптации, смерть
Время

63.

Стресс, в зависимости от изменения уровня
адаптационных возможностей делится:
эустресс
(адаптация)
дистресс
(истощение)
стресс, при котором
стресс, при котором
адаптационные
адаптационные
возможности организма
возможности организма
повышаются, происходит
снижаются. Дистресс
его адаптация к
приводит к развитию
стрессовому фактору и
болезней адаптации,
ликвидация самого стресса.
возможно к гибели.

64. Общий адаптационный синдром

Развивается с участием систем:
гипоталамо-гипофизарно-надпочечниковой.
симпато-адреналовой
гипоталамо-гипофизарно-тиреоидная ось
и гормонов:
АКТГ
кортикостероидов (глюкокортикоиды,
минералокортикоиды, андрогены, эстрогены)
Катехоламинов (адреналин, норадреналин)
ТТГ и тиреоидных гормонов
СТГ

65. Регуляция секреции гормонов при стрессе

Стресс
ЦНС
СНС: параганглии
Гипоталамус
Вазопрессин
Гипофиз
Мозговое
вещество
надпочечников
Адреналин
Норадреналин
АКТГ
ТТГ
Корковое
вещество
надпочечников
Щитовидная
железа
Тиреоидные
гормоны
Глюкокортикоиды
Минералокортикоиды
Ткани мишени
СТГ
Печень
Соматомедины

66.

Уровень
езистенности
Участие гормонов в стадиях ОАС
II стадия – резистентности
Гормоны: кортизол, СТГ.
эустресс
III
I
II
время
дистресс
I стадия – тревоги
шок
противошок
Гормоны:
адреналин,
вазопрессин,
окситоцин,
кортиколиберин,
кортизол.
III стадия – адаптации или
истощения
При адаптации:
- анаболические гормоны:
(CТГ, инсулин, половые гормоны).
При истощении:
-снижение гормонов адаптации.
Накопление повреждений.

67. Симпато-адреналовая ось

Симпатоадреналовая ось

68.

Синтез адреналина
OH
норадреналин
OH
О2
OH
Fe2+
CH 2
HC
COOH
Тир
OH
OH
HC
2+
Cu
CH 2
NH 2
COOH
О2
OH
OH
H2C
NH 2
дофамин
OH
OH
вит. С
B6
CH 2
NH 2
СО2
SAM SAГ
HC
ОН
HC
H2C
NH 2
H2C
норадреналин
ДОФА
ДОФАТирозиндофаминмонооксигеназа декарбоксилаза монооксигеназа
ОН
NНCH 3
адреналин
метилтрансфераза

69.

Эффекты
Норадреналин
Адреналин
++++
+++
++++
++
++
++
Теплопродукция
Сокращение ГМК
+++
+++
++++
+ или -
Липолиз (Мобилизация жирных
кислот)
Синтез кетоновых тел
Гликогенолиз
+++
++
+
+
+
+++
-
---
Артериальное давление
Частота сердечных сокращений
Периферическое сопротивление
Гликогенез
Моторика желудка и кишечника
Потовые железы (Выделение пота)
-
+
-
+

70. Гипоталамо-гипофизарно-надпочечниковая ось

Гипоталамо-гипофизарнонадпочечниковая ось
Гормоны коры надпочечников
Кортикостероиды
Глюкокортикоиды (кортизол) + стресс, травма,
гипогликемия
Минералокортикоиды (альдостерон) +
гиперкалиемия, гипонатриемия, ангиотензин II,
простагландины, АКТГ
Андрогены
Эстрогены

71.

Схема синтеза
кортикостероидов

72.

Кортикотропин релизиг гормон
кортикотропные клетки
передней доли гипофиза
дофамин
меланотропные клетки
средней доли гипофиза
Проопиомеланокортин (ПОМК)
241АК

73.

АКТГ
Максимальная секреция АКТГ (а также либерина и
глюкокортикоидов) наблюдается утром в 6-8 часов, а
минимальная - между 18 и 23 часами
АКТГ
MC2R (рецептор)
кора надпочечников
жировая ткань
глюкокортикоиды
липолиз
меланокортиновые
рецепторы клеток кожи,
меланоцитов, клеток
иммунной системы и др
Повышение
пигментации

74. Реакции синтеза кортикостероидов

митохондрия
липидная
капля
Н2О
Жирная
кислота
Эфир
2
холестерина
холестеролэстераза HO
АКТГ
11
12
1 19
10
5
3
4
17
13
9
14
8
7
6
Холестерин
24
22
18 21
20
23
25
CH 3
С O
26
27
16
15
холестеролдесмолаза
Р450
HO
Прегненолон

75. Синтез кортизола и альдостерона

CH 3
С O
CH 3
С O
гидроксистероид-ДГ
HO
цитоплазма
Прегненолон
CH 3
С O
ОН
O
Прогестерон
ЭПР
17-гидроксилаза
O
O
Гидроксипрогестерон
CH 3OH
С O
ЭПР
21-гидроксилаза
Дезоксикортикостерон
11-гидроксилаза
ЭПР 21-гидроксилаза (Р450)
CH 3OH
С O
ОН
O
O
Дезоксикортизол
11-гидроксилаза (Р450)
митохондрия
4 HO
O
HO
CH 3OH
С O
CH 3OH 3
С O
ОН 2
Пучковая
и сетчатая
зона
1
Кортикостерон
18-гидроксилаза
митохондрия
Кортизол
HO
CH 3OH
CHO С O
клубочковая
зона
O
Альдостерон

76. Действие глюкокортикоидов (кортизол)

в печени в основном оказывают анаболический
эффект (стимулирует синтез белков и нуклеиновых
кислот).
в мышцах, лимфоидной и жировой ткани, коже и
костях тормозят синтез белков, РНК и ДНК и
стимулирует распад РНК, белков, аминокислот.
стимулируют глюконеогенез в печени.
стимулируют синтез гликогена в печени.
тормозят потребление глюкозы инсулинзависимыми
тканями. Глюкоза идет в инсулиннезависимые ткани
– ЦНС.

77. Действие минералокортикоидов (основной представитель альдостерон)

Стимулируют:
Ингибируют:
реабсорбцию Na+ в
почках;
секрецию К+, NH4+ ,Н+
в почках, потовых,
слюнных железах,
слиз. обол-ке
кишечника.
синтез белковтранспортёров Na;
Na+,K+-АТФ-азы;
синтез белковтранспортёров К+;
синтез
митохондрльных
ферментов ЦТК.

78. Половые гормоны

79. Синтез андрогенов и их предшественников в коре надпочечников

В НАДПОЧЕЧНИКАХ
CH 3
С O
Синтез андрогенов и их
предшественников в
коре надпочечников
CH 3
С O
ЭПР
HO
Прегненолон
изомераза
O
ЭПР
гидроксилаза
Прогестерон
CH 3
С O
ОН
HO
CH 3
С O
ОН
O
Гидроксипрегненолон
Гидроксипрогестерон
О
О
HO
Дегидроэпиандростерон
митохондрия
активный
предшественник
гидроксилаза
Андростендион
малоактивный
предшественник
мало
ОН
HO
O
Андростендиол
мало
ОН
O
Тестостерон
ОН
мало
HO
Эстрадиол

80. Регуляция синтеза и секреции мужских половых гормонов

-
Гипоталамус
Гонадотропин-рилизинг гормон
+
-
ингибин
-
ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА
ФСГ
+
Клетки
Сертоли
ЛГ
+
Клетки
Лейдига
тестостерон
+
сперматогенез

81. Регуляция синтеза и секреции женских половых гормонов

+
-
Гипоталамус
Гонадотропин-рилизинг гормон
+
-
-
ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА
ФСГ
ЛГ
+
+
Фолликул
Жёлтое тело
эстрадиол
прогестерон

82. Действие половых гормонов

Андрогены:
-регулируют синтез белков у эмбриона в
сперматогониях, мышцах, костях,
почках и мозге;
-оказывают анаболическое действие;
-стимулируют клеточное деление и т.д..

83.

Эстрогены:
-стимулируют развитие тканей, участвующих в
размножении;
-определяют развитие женских вторичных половых
признаков;
-подготавливают эндометрий к имплантации;
-анаболическое действие на кости и хрящи;
-стимулируют синтез транспортных белков
тиреоидных и половых гормонов;
-увеличивают синтез ЛПВП и тормозят
образование ЛПНП, что ведёт к снижению ХС в
крови и т.д.
-влияет на репродуктивную функцию;
-действует на ЦНС и т.д..

84.

Прогестерон:
1. влияет на репродуктивную функцию
организма;
2. увеличивает базальную температуру тела
после
3. овуляции и сохраняется во время лютеиновой
фазы менструального цикла;
4. в высоких концентрациях взаимодействует с
рецепторами альдостерона почечных
канальцев (альдостерон теряет возможность
стимулировать реабсорбцию натрия);
5. действует на ЦНС, вызывая некоторые
особенности поведения в предменструальный
период.

85. Соматотропный гормон

СТГ

соматотропный
гормон
(гормон
роста),
одноцепочечный
полипептид из 191 АК, имеет 2
дисульфидных мостика. Синтезируется в
передней
доли
гипофиза
как
классический
белковый
гормон.
Секреция импульсная с интервалами в
20-30 мин.

86.

- соматолиберин
+ соматостатин
Гипоталамус
соматолиберин
соматостатин
-
+
-
ПЕРЕДНЯЯ ДОЛЯ ГИПОФИЗА
СТГ
Печень
Кости
+ глюконеогенез
+ синтез белка
+ рост
+ синтез белка
ИФР-1
Адипоциты
Мышцы
+ липолиз
- утилизация
глюкозы
+ синтез белка
- утилизация
глюкозы

87.

Под действием СТГ в тканях вырабатываются
пептиды - соматомедины.
Соматомедины
или инсулиноподобные
факторы
роста
(ИФР)
обладают
инсулиноподобной активностью и мощным
ростстимулирующим
действием.
Соматомедины
обладают
эндокринным,
паракринным и аутокринным действием. Они
регулируют
активность
и
количество
ферментов, биосинтез белков.

Гормоны — это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие. Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами. выделяются из вырабатывающих их клеток во внеклеточное пространство; не являются структурными компонентами клеток и не …

Гормоны оказывают влияние на клетки-мишени. Клетки-мишени — это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки. Биохимические механизмы передачи сигнала от гормона в клетку-мишень. Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают …

Строение гормонов бывает разным. В настоящее время описано и выделено около 160 различных гормонов из разных многоклеточных организмов. По химическому строению гормоны можно классифицировать по трем классам: белково-пептидные гормоны; производные аминокислот; стероидные гормоны. К первому классу относятся гормоны гипоталамуса и гипофиза (в этих железах синтезируются пептиды и некоторые белки), а также гормоны поджелудочной и паращитовидной …

Эндокринная система — совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции — одни …

Белково-пептидные гормоны. В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта …

Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины). Уже говорилось о том, …

Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH3, CO2 и Н2О. Гормоны подвергаются окислительному дезаминированию и дальнейшему окислению до СО2 и Н2О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад. В основном происходит …

Организм человека существует как единое целое благодаря системе внутренних связей, которая обеспечивает передачу информации от одной клетки к другой в одной и той же ткани или между разными тканями. Без этой системы невозможно поддерживать гомеостаз. В передаче информации между клетками в многоклеточных живых организмах, принимают участие три системы: ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА (ЦНС), ЭНДОКРИННАЯ СИСТЕМА (ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ) и ИММУННАЯ СИСТЕМА.

Способы передачи информации во всех названных системах - химические. Посредниками при передаче информации могут быть СИГНАЛЬНЫЕ молекулы.

К таким сигнальным молекулам относятся четыре группы веществ: ЭНДОГЕННЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА (медиаторы иммунного ответа, факторы роста и др.), НЕЙРОМЕДИАТОРЫ, АНТИТЕЛА (иммуноглобулины) и ГОРМОНЫ.

Б И О Х И М И Я Г О Р М О Н О В

ГОРМОНЫ - это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

ОБЩИЕ СВОЙСТВА ГОРМОНОВ.

1) выделяются из вырабатывающих их клеток во внеклеточное пространство;

2) не являются структурными компонентами клеток и не используются как источник энергии.

3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона.

4) обладают очень высокой биологической активностью - эффективно действуют на клетки в очень низких концентрациях (около 10 -6 - 10 -11 моль/л).

МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ.

Гормоны оказывают влияние на клетки-мишени.

КЛЕТКИ-МИШЕНИ - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

- "узнавание" гормона;

Преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения. Есть три типа таких заболеваний:

1. Связанные с недостаточностью синтеза белков-рецепторов.

2. Связанные с изменением структуры рецептора - генетических дефекты.

3. Связанные с блокированием белков-рецепторов антителами.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то