Медленные инфекции. Возбудители медленных, латентных и хронических вирусных инфекций

  • Глава 19. Частная протозоология
  • Глава 20. Клиническая микробиология
  • Часть I.
  • Глава 1. Введение в микробиологию и иммунологию
  • 1.2. Представители мира микробов
  • 1.3. Распространенность микробов
  • 1.4. Роль микробов в патологии человека
  • 1.5. Микробиология - наука о микробах
  • 1.6. Иммунология - сущность и задачи
  • 1.7. Связь микробиологии с иммунологией
  • 1.8. История развития микробиологии и иммунологии
  • 1.9. Вклад отечественных ученых в разви­тие микробиологии и иммунологии
  • 1.10. Зачем нужны знания микробиологии и иммунологии врачу
  • Глава 2. Морфология и классификация микробов
  • 2.1. Систематика и номенклатура микробов
  • 2.2. Классификация и морфология бактерий
  • 2.3. Строение и классификация грибов
  • 2.4. Строение и классификация простейших
  • 2.5. Строение и классификация вирусов
  • Глава 3. Физиология микробов
  • 3.2. Особенности физиологии грибов и простейших
  • 3.3. Физиология вирусов
  • 3.4. Культивирование вирусов
  • 3.5. Бактериофаги (вирусы бактерий)
  • Глава 4. Экология микробов - микроэкология
  • 4.1. Распространение микробов в окружающей среде
  • 4.3. Влияние факторов окружающей среды на микробы
  • 4.4 Уничтожение микробов в окружающей среде
  • 4.5. Санитарная микробиология
  • Глава 5. Генетика микробов
  • 5.1. Строение генома бактерий
  • 5.2. Мутации у бактерий
  • 5.3. Рекомбинация у бактерий
  • 5.4. Передача генетической информации у бактерий
  • 5.5. Особенности генетики вирусов
  • Глава 6. Биотехнология. Генетическая инженерия
  • 6.1. Сущность биотехнологии. Цели и задачи
  • 6.2. Краткая история развития биотехнологии
  • 6.3. Микроорганизмы и процессы, приме­няемые в биотехнологии
  • 6.4. Генетическая инженерия и область ее применения в биотехнологии
  • Глава 7. Противомикробные препараты
  • 7.1. Химиотерапевтические препараты
  • 7.2. Механизмы действия противомикроб-ных химиопрепаратов
  • 7.3. Осложнения при антимикробной химиотерапии
  • 7.4. Лекарственная устойчивость бактерий
  • 7.5. Основы рациональной антибиотикотерапии
  • 7.6. Противовирусные средства
  • 7.7. Антисептические и дезинфицирующие вещества
  • Глава 8. Учение об инфекции
  • 8.1. Инфекционный процесс и инфекционная болезнь
  • 8.2. Свойства микробов - возбудителей инфекционного процесса
  • 8.3. Свойства патогенных микробов
  • 8.4. Влияние факторов окружающей среды на реактивность организма
  • 8.5. Характерные особенности инфекционных болезней
  • 8.6. Формы инфекционного процесса
  • 8.7. Особенности формирования патоген-ности у вирусов. Формы взаимодействия вирусов с клеткой. Особенности вирусных инфекций
  • 8.8. Понятие об эпидемическом процессе
  • ЧаСть II.
  • Глава 9. Учение об иммунитете и факторы неспецифической резистентности
  • 9.1. Введение в иммунологию
  • 9.2. Факторы неспецифической резистентности организма
  • Глава 10. Антигены и иммунная система человека
  • 10.2. Иммунная система человека
  • Глава 11. Основные формы иммунного реагирования
  • 11.1. Антитела и антителообразование
  • 11.2. Иммунный фагоцитоз
  • 11.4. Реакции гиперчувствительности
  • 11.5. Иммунологическая память
  • Глава 12. Особенности иммунитета
  • 12.1. Особенности местного иммунитета
  • 12.2. Особенности иммунитета при различ­ных состояниях
  • 12.3. Иммунный статус и его оценка
  • 12.4. Патология иммунной системы
  • 12.5. Иммунокоррекция
  • Глава 13. Иммунодиагностические реакции и их применение
  • 13.1. Реакции антиген-антитело
  • 13.2. Реакции агглютинации
  • 13.3. Реакции преципитации
  • 13.4. Реакции с участием комплемента
  • 13.5. Реакция нейтрализации
  • 13.6. Реакции с использованием меченых антител или антигенов
  • 13.6.2. Иммуноферментный метод, или анализ (ифа)
  • Глава 14. Иммунопрофилактика и иммунотерапия
  • 14.1. Сущность и место иммунопрофилактики и иммунотерапии в медицинской практике
  • 14.2. Иммунобиологические препараты
  • Часть III
  • Глава 15. Микробиологическая и иммунологическая диагностика
  • 15.1. Организация микробиологической и иммунологической лабораторий
  • 15.2. Оснащение микробиологической и иммунологической лабораторий
  • 15.3. Правила работы
  • 15.4. Принципы микробиологической диагностики инфекционных болезней
  • 15.5. Методы микробиологической диагностики бактериальных инфекций
  • 15.6. Методы микробиологической диагностики вирусных инфекций
  • 15.7. Особенности микробиологической диагностики микозов
  • 15.9. Принципы иммунологической диагностики болезней человека
  • Глава 16. Частная бактериология
  • 16.1. Кокки
  • 16.2. Палочки грамотрицательные факультативно-анаэробные
  • 16.3.6.5. Ацинетобактер (род Acinetobacter)
  • 16.4. Палочки грамотрицательные анаэробные
  • 16.5. Палочки спорообразующие грамположительные
  • 16.6. Палочки грамположительные правильной формы
  • 16.7. Палочки грамположительные неправильной формы, ветвящиеся бактерии
  • 16.8. Спирохеты и другие спиральные, изогнутые бактерии
  • 16.12. Микоплазмы
  • 16.13. Общая характеристика бактериальных зоонозных инфекций
  • Глава 17. Частная вирусология
  • 17.3. Медленные вирусные инфекции и прионные болезни
  • 17.5. Возбудители вирусных острых кишечных инфекций
  • 17.6. Возбудители парентеральных вирус­ных гепатитов в, d, с, g
  • 17.7. Онкогенные вирусы
  • Глава 18. Частная микология
  • 18.1. Возбудители поверхностных микозов
  • 18.2. Возбудители эпидермофитии
  • 18.3. Возбудители подкожных, или субкутанных, микозов
  • 18.4. Возбудители системных, или глубо­ких, микозов
  • 18.5. Возбудители оппортунистических микозов
  • 18.6. Возбудители микотоксикозов
  • 18.7. Неклассифицированные патогенные грибы
  • Глава 19. Частная протозоология
  • 19.1. Саркодовые (амебы)
  • 19.2. Жгутиконосцы
  • 19.3. Споровики
  • 19.4. Ресничные
  • 19.5. Микроспоридии (тип Microspora)
  • 19.6. Бластоцисты (род Blastocystis)
  • Глава 20. Клиническая микробиология
  • 20.1. Понятие о внутрибольничной инфекции
  • 20.2. Понятие о клинической микробиологии
  • 20.3. Этиология вби
  • 20.4. Эпидемиология вби
  • 20.7. Микробиологическая диагностика вби
  • 20.8. Лечение
  • 20.9. Профилактика
  • 20.10. Диагностика бактериемии и сепсиса
  • 20.11. Диагностика инфекций мочевыводящих путей
  • 20.12. Диагностика инфекций нижних дыхательных путей
  • 20.13. Диагностика инфекций верхних дыхательных путей
  • 20.14. Диагностика менингитов
  • 20.15. Диагностика воспалительных забо­леваний женских половых органов
  • 20.16. Диагностика острых кишечных инфекций и пищевых отравлений
  • 20.17. Диагностика раневой инфекции
  • 20.18. Диагностика воспалений глаз и ушей
  • 20.19. Микрофлора полости рта и ее роль в патологии человека
  • 20.19.1. Роль микроорганизмов при заболеваниях челюстно-лицевой области
  • 17.3. Медленные вирусные инфекции и прионные болезни

    Медленные вирусные инфекции характери­зуются следующими признаками:

      необычно длительным инкубационным периодом (месяцы, годы);

      своеобразным поражением органов и тканей, преимущественно ЦНС;

      медленным неуклонным прогрессиро-ванием заболевания;

      неизбежным летальным исходом.

    Медленные вирусные инфекции могут вы­зывать вирусы, известные как возбудители острых вирусных инфекций. Например, ви­рус кори иногда вызывает ПСПЭ (см. разд. 17.1.7.3), вирус краснухи - прогрессирую­щую врожденную краснуху и краснушный панэнцефалит (табл. 17.10).

    Типичную медленную вирусную инфекцию животных вызывает вирус Мэди/Висна от­носящийся к ретровирусам. Он является воз­будителем медленной вирусной инфекции и прогрессирующей пневмонии овец.

    Сходные по признакам медленных вирус­ных инфекций заболевания вызывают при-оны - возбудители прионных инфекций.

    Прионы - белковые инфекционные частицы (транслитерация от сокр. англ. proteinacous infection particle ). Прионный белок обозначается как РгР (англ. prion protein), он может быть в двух изоформах: клеточной, нормальной (РгР с ) и изменен­ной, патологической (PrP sc). Ранее патоло­гические прионы относили к возбудителям медленных вирусных инфекций, теперь бо­лее правильно их относить к возбудителям конформационных болезней 1 , вызывающим I диспротеиноз (табл. 17.11).

    Прионы - неканонические патогены, вызывающие трансмиссивные губкообраз-ные энцефалопатии: человека (куру, бо­лезнь Крейтцфельдта-Якоба, синдром Герстманна-Штреусслера-Шейнкера, се­мейная фатальная бессонница, амиотрофи-ческий лейкоспонгиоз); животных (скрепи овец и коз, трансмиссивная энцефалопатия

    Таблица 17.10. Возбудители некоторых медленных вирусных инфекций человека

    Возбудитель

    Вирус кори

    Подострый склерозирующий панэнцефалит

    Вирус краснухи

    Прогрессирующая врожденная краснуха, прогрессирующий краснушный панэнцефалит

    Вирус клещевого энцефалита

    Прогредиентная форма клещевого энцефалита

    Вирус простого герпеса

    Подострый герпетический энцефалит

    Вирус иммунодефицита человека

    ВИЧ-, СПИД-инфекция

    Т-клеточная лимфома

    Полиомавирус JC

    Прогрессирующая многоочаговая лейкоэнцефалопатия

    Свойства прионов

    PrP c (cellular prion protein)

    PrP sc (scrapie prion protein)

    PrP c (cellular prion protein) - клеточная, нормальная изоформа прионного белка с молекулярной массой 33-35 кДа, де­терминируется геном прионного белка (прионный ген - PrNP - находится на коротком плече 20-й хромосомы чело­века). Нормальный РгР с появляется на поверхности клетки (заякорен в мембрану гликопротеином молекулы), чувствителен к протеазе. Он регулирует передачу не­рвных импульсов, циркадианные ритмы (суточные) циклы, участвует в метаболиз­ме меди в ЦНС

    PrP sc (scrapie prion protein - от названия прионной болезни овей скрепи - scrapie) и другие, например, РгР* (при болез­ни Крейтцфельдта-Якоба) - патологические, измененные поепранеляционными модификациями изоформы прионного белка с молекулярной массой 27-30 кДа. Такие прионы ус­тойчивы к протеолизу (к протеазе К), к излучениям, высокой температуре, формальдегиду, глютаральдегиду, бета-пропио-лактону; не вызывают воспаления и иммунной реакции. От­личаются способностью к агрегации в амилоидные фибриллы, гидрофобностью и вторичной структурой в результате повы­шенного содержания бета-складочных структур (более 40 % по сравнению с 3 % у PrP c ). PrP sc накапливается в плазматичес­ких везикулах клетки

    Схема пролиферации прионов представлена на рис. 17.18.

    норок, хроническая изнуряющая болезнь находящихся в неволе оленя и лося, губко-образная энцефалопатия крупного рогатого скота, губкообразная энцефалопатия ко­шек).

    Патогенез и клиника. Прионные инфекции характеризуются губкообразными измене­ниями мозга (трансмиссивные губкообраз-ные энцефалопатии). При этом развивают­ся церебральный амилоидоз (внеклеточный диспротеиноз, характеризующийся отло­жением амилоида с развитием атрофии и склероза ткани) и астроцитоз (разрастание астроцитарной нейроглии, гиперпродукция глиальных волокон). Образуются фибриллы, агрегаты белка или амилоида. Иммунитета к прионам не существует.

    Куру - прионная болезнь, ранее рас­пространенная среди папуасов (в переводе означает дрожание или дрожь) на о. Новая Гвинея в результате ритуального канни­бализма - поедания недостаточно терми­чески обработанного инфицированного прионами мозга погибших сородичей. В результате поражения ЦНС нарушаются координация движений, походка, появля­ются озноб, эйфория («хохочущая смерть»). Смертельный исход наступает через год. Инфекционные свойства болезни доказал К. Гайдушек.

    Болезнь Крейтцфельдта-Якоба - прион­ная болезнь (инкубационный период - до

    20 лет), протекающая в виде деменции, зри­тельных и мозжечковых нарушений и дви­гательных расстройств со смертельным ис­ходом через 9 месяцев от начала болезни. Возможны различные пути инфицирования и причины развития болезни: 1) при упот­реблении недостаточно термически обрабо­танных продуктов животного происхожде­ния, например мяса, мозга коров, больных губкообразной энцефалопатией крупного рогатого скота, а также; 2) при транспланта­ции тканей, например роговицы глаза, при применении гормонов и других биологичес­ки активных веществ животного происхож­дения, при использовании контаминирован-ных или недостаточно простерилизованных хирургических инструментов, при прозек­торских манипуляциях; 3) при гиперпродук­ции РrР и других состояниях, стимулирую­щих процесс преобразования РгР с в PrP sc . Заболевание может развиваться в результате мутации или вставки в области прионового гена. Распространен семейный характер бо­лезни в результате генетической предраспо­ложенности к данному заболеванию.

    Синдром Герстманна-Штреусслера- Шейнкера - прионная болезнь с наследс­твенной патологией (семейное заболевание), протекающая с деменцией, гипотонией, на­рушением глотания, дизартрией. Нередко носит семейный характер. Инкубационный период - от 5 до 30 лет. Летальный исход

    наступает через 4-5 лет от начала заболе­вания.

    Фатальная семейная бессонница - ауто-сомно-доминантное заболевание с прогрес­сирующей бессонницей, симпатической ги­перреактивностью (гипертензия, гипертер­мия, гипергидроз, тахикардия), тремором, атаксией, миоклониями, галлюцинациями. Нарушаются циркадианные ритмы. Смерть - при прогрессировании сердечно-сосудистой недостаточности.

    Скрепи (от англ. scrape - скрести) - «чесот­ка», прионная болезнь овец и коз, характери­зующаяся сильным кожным зудом, пораже­нием ЦНС, прогрессирующим нарушением координации движений и неизбежной гибе­лью животного.

    Губкообразная энцефалопатия крупного рога­ того скота - прионная болезнь крупного ро­гатого скота, характеризующаяся поражением ЦНС, нарушением координации движений и

    неизбежной гибелью животного. У животных наиболее инфицированы головной, спинной мозг и глазные яблоки.

    При при-онной патологии характерны губкообразные изменения мозга, астроцитоз (глиоз), отсутс­твие инфильтратов воспаления; окраска. Мозг окрашивают на амилоид. В цереброспиналь­ной жидкости выявляют белковые маркеры прионных мозговых нарушений (с помощью ИФА, ИБ с моноклональными антителами). Проводят генетический анализ прионного ге­на; ПЦР для выявления РгР.

    Профилактика. Введение ограничений на использование лекарственных препаратов жи­вотного происхождения. Прекращение про­изводства гормонов гипофиза животного про­исхождения. Ограничение трансплантации твердой мозговой оболочки. Использование резиновых перчаток при работе с биологичес­кими жидкостями больных.

    17.4. Возбудители острых респираторных вирусных инфекций

    ОРВИ - это группа клинически сходных, острых инфекционных вирусных заболева­ний человека, которые передаются преиму­щественно аэрогенно и характеризуются поражением органов дыхания и умеренной интоксикацией.

    Актуальность. ОРВИ относятся к числу са­мых распространенных болезней человека. Несмотря на обычно доброкачественное те­чение и благоприятный исход, эти инфекции опасны своими осложнениями (например, вторичными инфекциями). ОРВИ, ежегод­но поражающие миллионы людей, наносят значительный ущерб экономике (теряется до 40 % рабочего времени). Только в нашей стра­не каждый год затрачивается около 15 млрд рублей на оплату медицинской страховки, лекарств и средств профилактики острых рес­пираторных инфекций.

    Этиология. Острые инфекционные заболе­вания, при которых поражается дыхательный тракт человека, могут быть вызваны и бакте­риями, и грибами, и простейшими, и виру­сами. Различные вирусы могут передаваться аэрогенно и вызывать симптоматику, харак­терную для поражения респираторного трак­та (например, вирусы кори, эпидемического паротита, вирусы герпеса, некоторые энтеро-вирусы и др.). Однако возбудителями ОРВИ принято считать только те вирусы, у которых первичная репродукция происходит исклю­чительно в эпителии респираторного тракта. В качестве возбудителей ОРВИ зарегистри­ровано более 200 антигенных разновидностей вирусов. Они относятся к разным таксонам, каждый из которых имеет свои особенности.

    Таксономия. Большинство возбудителей впервые выделены от человека и типированы в 50-60-е годы XX в. Наиболее частыми воз­будителями ОРВИ являются представители семейств, приведенных в табл. 17.12.

    Общая сравнительная характеристика возбу­ дителей. Большинство возбудителей ОРВИ - РНК-содержащие вирусы, только аденови­русы содержат ДНК. Геном у вирусов пред­ставлен: двухцепочечной линейной ДНК - у

    аденовирусов, одноцепочечной линейной плюс-РНК - у рино- и коронавирусов, од­ноцепочечной линейной минус-РНК - у па-рамиксовирусов, а у реовирусов РНК двух-цепочечная и сегментированная. Многие возбудители ОРВИ генетически стабильны. Хотя РНК, особенно сегментированная, предрасполагает к готовности генетических рекомбинаций у вирусов и, как следствие, к изменению антигенной структуры. Геном ко­дирует синтез структурных и неструктурных вирусных белков.

    Среди вирусов ОРВИ есть простые (аде-но-, рино- и реовирусы) и сложные оболо-чечные (парамиксовирусы и коронавирусы). Сложноорганизованные вирусы чувствитель­ны к эфиру. У сложных вирусов - спиральный тип симметрии нуклеокапсида и форма вирио-на сферическая. У простых вирусов - кубичес­кий тип симметрии нуклеокапсида и вирион имеет форму икосаэдра. У многих вирусов имеется дополнительная белковая оболочка, покрывающая нуклеокапсид (у адено-, орто-миксо-, корона- и реовирусов). Размеры ви-рионов у большинства вирусов средние (60- 160 нм). Самые мелкие - риновирусы (20 нм); самые крупные - парамиксовирусы (200 нм).

    Антигенная структура вирусов ОРВИ слож­ная. У вирусов каждого рода, как правило, есть общие антигены; кроме того, вирусы имеют и типоспецифические антигены, по которым можно проводить идентификацию возбудителей с определением серотипа. В со­став каждой группы вирусов ОРВИ входит различное количество серотипов и серовари-антов. Большинство вирусов ОРВИ обладает гемагглютинируюшей способностью (кроме PC- и риновирусов), хотя не все они имеют собственно гемагглютинины. Этим опреде­ляется применение РТГА для диагностики многих ОРВИ. Реакция основана на блоки­ровании активности гемагглютининов вируса специфическими антителами.

    Репродукция вирусов происходит: а) це­ликом в ядре клетки (у аденовирусов); б) целиком в цитоплазме клетки (у остальных). Эти особенности имеют значение для диа­гностики, так как определяют локализацию и характер внутриклеточных включений. Такие включения представляют собой «фабрики»

    Таблица 17.12. Наиболее частые возбудители ОРВИ

    Семейство

    Вирусы парагриппа человека, серотипы 1,3

    PC-вирус, З серотииа

    Вирусы парагриппа человека, серотипы 2, 4а, 4b, вирус эпидеми­ ческого паротита и др. *

    Вирус кори и др*

    Коронавирусы, 11 серотипов

    Риновирусы (более 113 серотипов)

    респираторные реовирусы, 3 серотииа

    аденовирусы, чаше серотипы 3, 4, 7 (известны вспышки, вызван­ные типами 12, 21)

    *Инфекции являются самостоятельными нозологическими формами и обычно не включаются в группу собственно ОРВИ.

    по производству вирусов и обычно содержат большое количество вирусных компонентов, «неиспользованных» при сборке вирусных частиц. Выход вирусных частиц из клетки может происходить двумя способами: у про­стых вирусов - «взрывным» механизмом с разрушением клетки хозяина, а у сложных ви­русов - путем «отпочковывания». При этом сложные вирусы получают от клетки хозяина свою оболочку.

    Культивирование большинства вирусов ОРВИ проводится достаточно легко (исключе­ние составляют коронавирусы). Оптимальная лабораторная модель для культивирования этих вирусов - культуры клеток. Для каждой группы вирусов подобраны наиболее чувс­твительные клетки (для аденовирусов - клет­ки HeLa, эмбриональные клетки почек; для коронавирусов - эмбриональные клетки и клетки трахеи, и т. д.). В зараженных клетках вирусы вызывают ЦПЭ, но эти изменения не патогномоничны для большинства возбуди­телей ОРВИ и обычно не позволяют иденти­фицировать вирусы. Культуры клеток исполь­зуют также при идентификации возбудителей с цитолитической активностью (например, аденовирусов). Для этого применяют так на­зываемую реакцию биологической нейтра­лизации вирусов в культуре клеток (РБН или РН вирусов). В ее основе - нейтрализация цитолитического действия вирусов типоспе-цифичеекми антителами.

    Эпидемиология. «Респираторные» вирусы встречаются повсеместно. Источник инфек­ции - больной человек. Основной меха­низм передачи инфекции - аэрогенный, пути - воздушно-капельный (при каш­ле, чихании), реже - воздушно-пылевой. Доказано также, что некоторые возбудители ОРВИ могут передаваться контактно (аде-но-, рино- и PC-вирусы). В окружающей среде устойчивость респираторных вирусов средняя, инфекционность особенно хоро­шо сохраняется при низких температурах. Прослеживается сезонность большинства ОРВИ, которые чаще возникают в холодное время года. Заболеваемость выше среди го­родского населения. Предрасполагающими и утяжеляющими течение факторами являются пассивное и активное курение, заболевания органов дыхания, физиологический стресс, снижение общей сопротивляемости организ­ма, иммунодефицитные состояния и неин­фекционные заболевания, при которых они наблюдаются.

    Болеют и дети, и взрослые, но чаще дети. В развитых странах большинство посеща­ющих детские сады и ясли дошкольников болеют ОРВИ 6-8 раз в год, причем обыч­но это инфекции, вызванные риновируса-ми. Естественный пассивный иммунитет и грудное вскармливание формируют защиту против ОРВИ у новорожденных (до 6-11 ме­сяцев).

    Патогенез. Входные ворота инфекции - верхние дыхательные пути. Респираторные вирусы инфицируют клетки, прикрепляясь своими активными центрами к специфичес­ким рецепторам. Например, практически у всех риновирусов белки капсида соединяют­ся с молекулами рецептора адгезии ICAM-1, чтобы затем проникнуть в фибробласты и другие чувствительные клетки. У вирусов парагриппа белки суперкапсида присоединя­ются к гликозидам на поверхности клеток, у коронавирусов прикрепление осуществляется за счет связывания с гликопротеиновыми ре­цепторами клетки, аденовирусы взаимодейс­твуют с клеточными интегринами, и т. п.

    Большинство респираторных вирусов реп­лицируется локально в клетках респиратор­ного тракта и, соответственно, вызывает лишь кратковременную виремию. Местные прояв­ления ОРВИ вызваны в большинстве своем действием медиаторов воспаления, в частнос­ти, брадикининов. Риновирусы обычно вызы­вают незначительные повреждения эпителия слизистой носа, но PC-вирус значительно более разрушителен и может вызывать некроз эпителия дыхательного тракта. Некоторые аденовирусы имеют цитотоксическую актив­ность и быстро оказывают цитопатический эффект и отторжение инфицированных кле­ток, хотя обычно сам вирус не распространя­ется дальше регионарных лимфоузлов. Отек, клеточная инфильтрация и десквамация по­верхностного эпителия в месте локализации возбудителей характерны и для других ОРВИ. Все это создает условия для присоединения вторичных бактериальных инфекций.

    Клиника. При ОРВИ различной этиоло­гии клиническая картина может быть сход­ной. Течение заболевания может существенно различаться у детей и взрослых. Для ОРВИ характерен короткий инкубационный пери­од. Заболевания, как правило, кратковремен­ные, интоксикация слабая или умеренная. Нередко ОРВИ даже протекают без сколь­ко-нибудь значимого подъема температуры. Характерными симптомами являются катар верхних дыхательных путей (ларингит, фа­рингит, трахеит), ринит и ринорея (при ри-новирусной инфекции часто бывает изоли­рованный ринит и сухой кашель). При аде-

    новирусной инфекции могут присоединиться фарингоконъюнктивит, лимфоаденопатия. У детей обычно тяжело протекает инфекция, вызванная PC-вирусами. При этом поража­ются нижние отделы дыхательного тракта, возникают бронхиолиты, острая пневмония и астматический синдром. При ОРВИ часто развивается сенсибилизация организма.

    Тем не менее большинство неосложненных ОРВИ у практически здоровых лиц протекает не тяжело и заканчивается в течение недели полным выздоровлением больного даже без сколько-нибудь интенсивного лечения.

    Течение ОРВИ нередко осложняется, так как на фоне постинфекционного иммуноде­фицита возникают вторичные бактериальные инфекции (например, синуситы, бронхиты, отиты и т. п.), которые значительно утяже­ляют течение заболевания и увеличивают его продолжительность. Наиболее тяжелым «рес­пираторным» осложнением является острая пневмония (вирусно-бактериальные пневмо­нии протекают тяжело, нередко приводя к ги­бели больного из-за массивного разрушения эпителия дыхательных путей, геморрагии, формирования абсцессов в легких). Кроме того, течение ОРВИ может осложняться не­врологическими расстройствами, нарушени­ем функций сердца, печени и почек, а так­же симптомами поражения ЖКТ Это может быть связано с действием как самих вирусов, так и с токсическим воздействием продуктов распада инфицированных клеток.

    Иммунитет. Наиболее важную роль в защи­те от повторных заболеваний, несомненно, играет состояние местного иммунитета. При ОРВИ наибольшими защитными функция­ми в организме обладают вируснейтрализую-щие специфические IgA (обеспечивают мес­тный иммунитет) и клеточный иммунитет. Антитела обычно продуцируются слишком медленно, чтобы быть эффективными факто­рами защиты во время заболевания. Другим важным фактором в защите организма от вирусов ОРВИ является местная выработка al-интерферона, появление которого в но­совом отделяемом приводит к значительно­му снижению количества вирусов. Важной особенностью ОРВИ является формирование вторичного иммунодефицита.

    Постинфекционный иммунитет при боль­шинстве ОРВИ нестойкий, непродолжитель­ный и типоспецифический. Исключение со­ставляет аденовирусная инфекция, которая сопровождается формированием достаточно прочного, но также типоспецифического им­мунитета. Большое число серотипов, боль­шое количество и разнообразие самих виру­сов объясняют высокую частоту повторных заболеваний ОРВИ.

    Микробиологическая диагностика. Материалом для исследования служат носоглоточная слизь, мазки-отпечатки и смывы из зева и носа.

    Экспресс-диагностика. Обнаруживают ви­русные антигены в инфицированных клетках. Применяют РИФ (прямой и непрямой мето­ды) с использованием меченных флюорохро-мами специфических антител, а также ИФА. Для труднокультивируемых вирусов исполь­зуют генетический метод (ПЦР).

    Вирусологический метод. В течение долгого времени заражение культур клеток секрета­ми респираторного тракта для культивирова­ния вирусов было основным направлением в диагностике ОРВИ. Индикацию вирусов в зараженных лабораторных моделях проводят по ЦПЭ, а также РГА и гемадсорбции (для ви­русов с гемагглютинирующей активностью), по образованию включений (внутриядерные включения при аденовирусной инфекции, цитоплазматические включения в околоядер­ной зоне при реовирусной инфекции и т. п.), а также по образованию «бляшек», и «цветной пробе». Идентифицируют вирусы по анти­генной структуре в РСК, РПГА, ИФА, РТГА, РБН вирусов.

    Серологический метод. Противовирусные антитела исследуют в парных сыворотках больного, полученных с интервалом в 10-14 дней. Диагноз ставят при увеличении тит­ра антител как минимум в 4 раза. При этом определяется уровень IgG в таких реакциях, как РБН вирусов, РСК, РПГА, РТГА и др. Так как продолжительность заболевания часто не превышает 5-7 дней, то серологическое ис­следование обычно служит для ретроспек­тивной диагностики и эпидемиологических исследований.

    Лечение. Эффективного этиотропного ле­чения ОРВИ в настоящее время нет (по-

    пытки создать препараты, действующие на вирусы ОРВИ, ведутся в двух направле­ниях: препятствие «раздеванию» вирусной РНК и блокирование клеточных рецепто­ров). Неспецифическим противовирусным действием обладает а-интерферон, препа­раты которого применяют интраназально. Внеклеточные формы адено-, рино- и мик-совирусов инактивирует оксолин, который применяют в виде глазных капель или мази интраназально. Только при развитии вто­ричной бактериальной инфекции назнача­ют антибиотики. Основное лечение - па­тогенетическое/симптоматическое (вклю­чает детоксикацию, обильное теплое питье, жаропонижающие препараты, витамин С и т. п.). Для лечения можно использовать антигистаминные препараты. Большое зна­чение имеет повышение общей и местной сопротивляемости организма.

    Профилактика. Неспецифическая профи­лактика заключается в противоэпидемических мероприятиях, ограничивающих распростра­нение и передачу вирусов аэрогенно и кон­тактно. В эпидсезон необходимо принимать меры, направленные на повышение общей и местной сопротивляемости организма.

    Специфическая профилактика большинс­тва ОРВИ не эффективна. Для профилактики аденовирусной инфекции разработаны перо-ральные живые тривалентные вакцины (из штаммов типов 3, 4 и 7; вводятся перорально, в капсулах), которые применяются по эпид-показаниям.

    ЗУЕВ В.А., 2014 УДк 616&9-022&6%005

    Медленные инфекции человека и животных

    ФГБУ «НИИ эпидемиологии и микробиологии им. Н.Ф. Гамалеи» Минздрава России, 123098, г. Москва

    Обзор, посвященный 60-летию изучения медленных инфекций человека и животных, вызываемых вирусами и прионами.

    Ключевые слова: медленная инфекция; персистенция; вирусы; прионы.

    slow infections of humans and animals

    Gamaleya Scientific Research Institute of Epidemiology and Microbiology, Ministry of Health of the Russian

    Federation,123098, Moscow, Russia

    This review is dedicated to the 60-th anniversary of the exploration of slow infections of humans and animals caused by viruses and prions.

    Key words: slow infection; persistence; viruses; prions.

    История изучения медленных инфекций (МИ) как научной проблемы началась в 1954 г. - с того момента, когда В. Sigurdsson - профессор Рейкьявикского института экспериментальной патологии (Исландия) - прочитал свои знаменитые лекции в Лондонском университете. Задолго до этого В. Sigurdsson был приглашен исландскими фермерами для выяснения причин возникновения массовых заболеваний среди овец на различных фермах острова. Он столкнулся с весьма разнообразными клиническими проявлениями этих действительно разных заболеваний, среди которых были признаки поражения и ЦНС у животных, и нарушения со стороны дыхательных органов. Однако, несмотря на различия симптоматики, В. Sigurdsson обнаружил между этими болезнями и опреденные черты сходства: необычно продолжительный инкубационный период (годы), медленно прогрессирующий характер течения процесса, необычность поражения органов и тканей и неизбежный летальный исход. Именно эти четыре признака и легли в основу наименования таких заболеваний, как МИ .

    Спустя три года D. Gajdusek и V. Zigas опубликовали результаты своих исследований на острове Новая Гвинея, где среди папуасов-каннибалов широко распространилось смертельное заболевание - куру. Вскоре благодаря результатам анализа, проведенного Hadlow , стало очевидным большое сходство клинических проявлений, эпидемиологических показателей и пато-морфологической картины куру у человека и скрепи у овец. Это означало, что МИ могут поражать не только животных, но и людей. Подобное допущение значительно повысило интерес к МИ и, естественно, к выяснению их причин. Напомним, что тогда, в середине ХХ столетия, наблюдался период бурного развития медицинской вирусологии, связанный с продолжающимися открытиями новых вирусов - возбудителей острых лихорадочных заболеваний . Отсюда понятно, почему в поисках возбудителей МИ господствовало мнение об их вирусной

    природе. И вскоре такое предположение действительно начало оправдываться.

    В 1960 г. в лаборатории В. Sigurdsson был выделен вирус висны - возбудитель типичной МИ овец, описанной еще автором в своих первых лекциях. По морфологическим и биохимическим свойствам вирус висны оказался близок хорошо известным онкорнавирусам . Это открытие еще более укрепило мнение о вирусной природе МИ. И вскоре был получен еще один аргумент в пользу такого представления: установлена вирусная природа известной еще с 1933 г. МИ детей и подростков - подострого склерозирующего панэнцефалита (ПСПЭ), смертельного заболевания, вызываемого, как оказалось, вирусом кори . Дальнейшее развитие проблемы уже медленных вирусных инфекций (МВИ) отличалось необычайным динамизмом: родившись в рамках ветеринарии, проблема уверенно вошла в медицину, когда МВИ были многократно описаны у человека (табл. 1).

    Несмотря на то что в основе развития любой МИ лежит один и тот же процесс - персистенция возбудителя - механизм формирования патогенеза каждого конкретного заболевания оказался весьма различным. Так, например, при врожденной краснухе вирус вызывает выраженное снижение скорости пролиферации и жизнеспособности зараженных клеток, что приводит к нарушению процесса закладки и развития органов и тканей в организме плода. И чем раньше это происходит, тем большее количество аномалий регистрируют при рождении, нередко несовместимых с жизнью . При развитии ПСПЭ, вызываемого вирусом кори, напротив, выявленные в сыворотке крови и спинномозговой жидкости в очень высокой концентрации (1:16 000 !) противокоревые антитела прямо свидетельствовали об иных механизмах патогенеза этого заболевания. Оказалось, что раннее (до 2-летнего возраста) перенесение кори ребенком повышает риск развития ПСПЭ, что обусловлено накоплением в организме дефектных форм

    Для корреспонденции: Зуев Виктор Абрамович, д-р мед. наук, проф.; e-mail: [email protected] Correspondence to: Victor Zuev, MD, PhD, DSc, prof.; e-mail: [email protected]

    Таблица 1 Медленные вирусные инфекции человека

    Наименование болезни

    Возбудитель

    Подострый послекоревой лейкоэнце-фалит

    Прогрессирующая врожденная краснуха

    Прогрессирующий краснушный панэнцефалит

    Подострый герпетический энцефалит

    Подострый аденовирусный энцефалит

    Прогрессирующая многоочаговая лейкоэнцефалопатия

    Хронический инфекционный моно-нуклеоз

    Цитомегаловирусное поражение мозга

    Кожевниковская эпилепсия и прогрессирующий бульбарный паралич

    Хронический менингоэнцефалит при иммунодефиците

    Вирусный гепатит В

    Вирусный гепатит С

    Вирусный гепатит D

    Вирусный гепатит G

    Вирусный гепатит ТTV

    Синдром приобретенного иммунодефицита

    Т-клеточная лимфома

    Балканская эндемическая нефропатия

    Бешенство

    Лимфоцитарный хориоменингит Медленная гриппозная инфекция

    Парамиксовирус - вирус кори

    Тогавирус - вирус краснухи Тот же

    Вирус простого герпеса Аденовирусы типа 7 и 32

    Паповавирусы - вирусы JC и ОВ-40

    Герпетовирус - вирус Эпштейна-Барр

    Цитомегаловирус

    Вирус клещевого энцефалита

    Вирусы полиомиелита и ЕСНО

    Вирус гепатита В

    Вирус гепатита С

    Вирус гепатита D

    Вирус гепатита G

    Парвавирус (?) - TTV

    Вирус иммунодефицита человека

    Онкорнавирусы HTLV-I и HTLV-II

    Неклассифицированный вирус

    Вирус бешенства

    Вирус гриппа A

    вируса, приводящих к слабовыраженной, но постоянной антигенной стимуляции иммунокомпетентных клеток, вызывая гиперпродукцию антител, которые нейтрализуют поверхностные вирусспецифические белки, но сохраняют недоступность клетки для цитотоксических лимфоцитов или иммунного лизиса комплементом . Еще один пример своеобразия патогенеза мы наблюдаем при формировании медленной гриппозной инфекции у части потомства млекопитающих (мыши), родившихся от самок, экспериментально зараженных вирусом гриппа, или от самок-вирусоносителей . В этом случае механизм патогенеза обусловлен нарушением синтеза в макрофагах интерлейкина-1, что приводит к развитию выраженного иммунодефицита плода . В результате у потомства вместо столь характерной для гриппозной инфекции воспалительной реакции практически во всех органах и тканях развивается первично-дегенеративный процесс вплоть до формирования губкообразной энцефалопатии головного мозга . Эти безусловные успехи в описании новых МВИ и выяснении их механизмов послужили дополнительным стимулом в поисках новых МВИ не только у человека, но и у животных (табл. 2).

    Нетрудно понять, что с самого начала вся проблема

    МИ человека и животных представлялась и разрабатывалась как вирусологическая, к чему действительно имелись и до сих пор имеются немалые основания, тем более что практически до последнего времени, хотя и «нелавинообразно», описание новых МВИ все же происходит. Хорошим примером служит открытие вирусов иммунодефицита человека, способных формировать типичную медленную форму инфекционного процесса с инкубационным периодом до 12 лет . Вместе с тем уже в первые годы на фоне этиологического, патогенетического и клинического разнообразия, которым отличались выявляемые МВИ, в литературе начинают появляться сообщения, описывающие особую группу МИ человека и животных, патоморфологические изменения при которых в организме отличаются весьма существенным однообразием: в организме отсутствуют признаки воспаления и наряду с этим в ЦНС развивается медленно прогрессирующая картина выраженного первично-дегенеративного процесса в головном, а иногда и в спинном мозге. Изменения выражаются в картине гибели нейронов, накоплении амилоидных бляшек и выраженном глиозе. В итоге все эти изменения приводят к формированию так называемого губ-кообразного состояния ^а^ spongiosus) мозговой ткани, что и послужило основанием для обозначения этой группы заболеваний как трансмиссивные губкоо-бразные энцефалопатии (ТГЭ). Именно такую патоги-стологическую картину и продемонстрировал в 1954 г. В. Sigurdsson в одной из своих лекций, в которой описал давно известную МИ овец - скрепи, характеризующуюся признаками резкого раздражения кожи, возбудимостью и нарушением координации движений. Вначале развивается атаксия, а затем неспособность животного стоять. Все эти проявления создают весьма типичную картину, облегчающую постановку диагноза. Заболевание развивается медленно, продолжается от нескольких месяцев до нескольких лет и всегда на фоне прогрессирующего истощения заканчивается гибелью животного. Несмотря на широкое распространение в разных странах, природа заболевания оставалась неизвестной, и скрепи долгое время рассматривалась как чисто сельскохозяйственная проблема. Медленное изучение скрепи во многом объяснялось вынужденностью проведения экспериментов на овцах, успешная передача заболевания мышам и другим лабораторным животным оказалась переломным моментом в истории изучения этого заболевания, да и всей проблемы в

    Таблица 2 Медленные вирусные инфекции животных

    Наименование болезни

    Возбудитель

    Инфекционная анемия лошадей

    Болезнь Борна Алеутская болезнь норок

    Лимфоцитарный хориоменингит мышей

    Бешенство собак Африканская лихорадка свиней

    Медленная гриппозная инфекция мышей

    Вирус висны

    Вирус инфекционной анемии лошадей

    Вирус болезни Борна

    Вирус алеутской болезни норок

    Вирус лимфоцитарного хориоменингита

    Вирус бешенства

    Вирус африканской лихорадки свиней

    Вирус гриппа А

    целом . Сходная картина патогистологических изменений описана и при куру у людей. Продолжительность инкубационного периода составляет в среднем 5-10 лет, однако может продолжаться 25-30 и даже до 50 лет , если заражение происходит в юности или раннем детском возрасте. Все патогистологические изменения при куру ограничиваются только в ЦНС и на фоне гипертрофии и пролиферации астроглии выражаются в формировании типичной губкообразной энцефалопатии. В ходе настойчивых поисков D. Gajdusek сумел передать куру шимпанзе, а впоследствии и низшим обезьянам, чем и доказал инфекционную природу куру .

    Эти находки заметно повысили интерес к подобного рода заболеваниям, и с тех пор в литературе постепенно начали накапливаться сообщения, описывающие инфекционные заболевания человека и животных, при которых развивалась одна и также картина патогисто-логических нарушений, выражающаяся именно в гибели нейронов, накоплении амилоидных бляшек, развитии глиоза и формировании губкообразного состояния (status spongiosus) мозговой ткани. Так, коллективу под руководством D. Gajdusek, помимо успехов при изучении куру, в 1968 г. удается выяснить инфекционную природу еще одной МИ человека с неустановленной этиологией, известной еще с 1920-х годов - болезни Крейтцфельдта-Якоба (БКЯ), получив развитие клинической картины заболевания у шимпанзе после введения животным мозговых гомогенатов от погибших людей . БКЯ распространена по всему миру и встречается с частотой 1-2 случая на 1 млн популяции в год. Однако в Чили, Израиле и Словакии существуют кластеры, где заболеваемость оказывается значительно выше . Заболеванию подвергнуты и мужчины, и женщины в возрасте 55-75 лет. В клинической картине характерны быстро прогрессирующее слабоумие, миоклонус и заметно прогрессирующие двигательные нарушения, что, как правило, в течение нескольких месяцев приводит к смертельному исходу. В отличие от всех известных инфекционных заболеваний для БКЯ характерно то, что из 100% заболевших у 85% БКЯ возникает как спорадическое заболевание людей старшего возраста, у 10-15% -как наследственное заболевание и менее чем у 1-5% эта болезнь развивается как инфекционная, т.е. в результате внешнего заражения . Этот последний вариант подразумевает так называемые ятрогенные случаи заболевания, связанные с медицинскими манипуляциями или пересадками тканевых материалов от человека к человеку. Впервые подобный случай был описан в 1974 г. у пациента, которому пересадили роговицу от трупа . Впоследствии случаи развития БКЯ регистрировали после прересадки печени, роговицы, твердой мозговой оболочки, в результате введения гормона роста, ГТГ, переливания крови, а также в результате использования недостаточно хорошо простерилизованных электродов для стереоэлектроэнцефалографии или хирургического инструментария .

    Наряду с открытием новых ТГЭ человека увеличивался список подобных заболеваний и у животных. Кроме давно известной скрепи, на норководческих фермах штатов Висконсин и Миннесота (США) в 1947 г. зарегистрирована трансмиссивная энцефалопатия норок (ТЭН), инфекционная природа которой подтверждалась передачей заболевания с помощью фильтратов зараженных органов от больных животных здоровым. Инкубационный период при ТЭН до 1 года. Заболевание после первых симптомов длится от 2 до 6 нед и всегда заканчивается летально. При вскрытии обнаруживают выраженную губкообразную энцефалопатию с ярко вы-

    раженным астроцитозом нейроглии . К этому списку следует добавить и обнаруженную в 1978 г. в штате Колорадо (США) «хроническую изнуряющую болезнь» (ХИБ) оленей и лосей - заболевание, характеризующееся губкообразной энцефалопатией с астроцитозом и формированием амилоидных бляшек в головном мозге. ХИБ зарегистрирована в США и Канаде среди оленей и лосей зоопарков, а также среди стад, находящихся в естественных условиях .

    Несмотря на убедительные доказательства инфекционной природы ТГЭ и у человека, и у животных, долгое время не удавалось выявить возбудителя ни в одном случае этих болезней. Между тем исследования в этом направлении приобретали все более широкий размах, что во многом обусловлено возможностью передачи ряда ТГЭ лабораторным животным, главным образом мышам и хомякам. Многочисленные исследователи использовали вирусологические подходы, основываясь не только на результатах открытия МВИ, но и на основании уже известных, хотя и косвенных характеристик предполагаемого инфекционного агента. Действительно агент всех ТГЭ проходил через бактериальные фильтры; не размножался на искусственных питательных средах; воспроизводил феномен титрования; накапливался до концентрации 105-1011 ИД50 в 1 г мозговой ткани; был способен адаптироваться к новому хозяину; обладал генетическим контролем чувствительности некоторых хозяев; воспроизводил феномен интерференции; способен к персистенции в клеточных культурах, полученных из органов и тканей зараженного животного . Эти и некоторые другие черты, казалось, явно указывали на свойства, характерные для широкого круга известных вирусных возбудителей. Вместе с тем некоторые свойства инфекционных агентов ТГЭ оказывались достаточно необычными. Возбудители ТГЭ отличались устойчивостью к действиям ДНКазы и РНКазы, ультрафиолета, проникающей радиации, ультразвука, глутаральдегида, бета-пропиолактона, формальдегида, псораленов, толуола, ксилола, этанола, нагревания до 80оС и даже не полностью инактивировались после кипячения .

    В связи с этими особенностями для возбудителей ТГЭ даже предлагались различные наименования, однако вся эта неопределенность была устранена благодаря результатам комплексных исследований, проведенных американским биохимиком S. Prusiner. Им прежде всего был получен исходный инфекционный материал в виде гомогената мозга зараженных возбудителем скрепи хомяков, у которых мозговая ткань содержала в 100 раз больше инфекционного агента, чем у мышей. Используя экстракцию детергентами, дифференциальное центрифугирование, обработку нуклеазами, про-теазами и анализ в гелиевом электрофорезе, он сумел при сохранении инфекционности очистить исходный материал в 100 раз. Последующее фракционирование в градиенте плотности сахарозы позволило (также при сохранении инфекционности и конечной очистке в 100-1000 раз) определить чисто белковую безнуклеиновую природу возбудителя скрепи в виде молекул одного вида молекулярной массой 27-30 кД. S. Prusiner обозначил обнаруженный им инфекционный белок как «инфекционный прионный белок», а в качестве инфекционной единицы предложил использовать термин «prion» как анаграмму английских слов - prote-inaceous infectious (particle). Таким образом, прион представляет собой инфекционную единицу, состоящую из молекул инфекционного прионного белка .

    У млекопитающих прионный белок может существовать в двух изоформах, т.е. в здоровом организме обнаруживают неинфекционный прионный белок того же самого

    аминокислотного состава и той же самой молекулярной массы, т. е. также состоящий из 253 аминокислот, но не обладающий инфекционностью и отличающийся от инфекционного лишь своей третичной и даже четвертичной структурой. В отличие от инфекционного прионного белка его неинфекционная изоформа (принимая во внимание его клеточное происхождение) была наименована как «нормальный» или «клеточный прионный белок», обозначенный символом PrPC (от английского Prion Protein Cell). Ген PRNP, кодирующий синтез белка PrPC, находится в коротком плече хромосомы 20 человека и в хромосоме 2 мыши. Ген состоит из двух разделенных интроном экзонов. Первый из экзонов содержит нетранслируемые последовательности, в то время как второй включает открытую рамку считывания, кодирует собственно PrPC. Ген является высококонсервативным, и наивысший уровень его экспрессии отмечен в нейронах, где концентрация иРНК для PrPC оказывается в 50 раз выше по сравнению с таковой в клетках глии . Синтезируясь в эндо-плазматическом ретикулуме клетки, белок покидает его, проходит через аппарат Гольджи и накапливается на поверхности клеток . Представляя собой гликопротеин с присоединенным к нему гидрофобным гликозилфосфо-тидилинозитольным якорем и сахарами, он первоначально экспрессируется в период раннего эмбриогенеза, а у взрослых особей локализуется главным образом в нейронах головного мозга и спинном мозге, а также в значительно меньшей концентрации в клетках глии, селезенки, лимфатических узлов . При анализе функции клеточного прионного белка PrPC выявлена его важную роль в поддержании сохранности нейронов и глии в отношении окислительного стресса, причастности к процессам регуляции содержания внутриклеточного кальция в нейронах, участия в поддержании нормального функционирования синапсов, в метаболизме меди, в трансдукции сигналов в нервной ткани . В последнее время показана важная роль этого белка в эмбриогенезе, плюрипотенции и дифференциации эмбриональных стволовых клеток , а также в процессах мышечной регенерации . Еще одна функция нормального прионного белка PrPC связана с поддержанием в клетках, тканях, органах и организме в целом так называемых циркадианных ритмов (от лат. circa - около, dies - день), т.е. околосуточных ритмов покоя и активности, что хорошо подкрепляется фактом открытия в 1986 г. E. Lugaresi и соавт. новой МИ, обозначенной как «смертельная семейная бессонница». Авторы обнаружили пациентов, cтрадающих снижением в организме синтеза клеточного прионного белка PrPC. У таких людей регистрировали резкое сокращение продолжительности сна, развитие галлюцинаций, утрату циркадианных ритмов, в конечном счете такие лица погибали от бессонницы. Описаны уже более 100 случаев этого заболевания среди 40 семейств, проживающих в Италии, Германии, Австрии, Испании, Великобритании, Франции, Финляндии, США, Японии, Австралии, Китае и Марокко . Прионный белок в организме людей и животных, страдающих ТГЭ, находится в другой форме, которая обозначается аббревиатурой PrPSc (от англ. Scrapie), что связано с тем, что заболевание скрепи встречается в природе, и этот белок был выделен из мозговой ткани зараженных именно возбудителем скрепи хомяков . Инфекционный прионный белок PrPSc оказался устойчивым к нуклеазам (РнКазе и ДНКазе), УФ-облучению, пороникающей радиации, таким органическим растворителям, как толуол, ксилол и этанол, нагреванию до 80оС, а также, что отличает его от нормального клеточного прионного белка PrPC, и к действию протеазы К . Процесс увеличения количества такого белка PrPSc в организме зараженных людей или животных принципиально отличается от про-

    цесса размножения возбудителей вирусных или бактериальных инфекций и осуществляется благодаря изменениям третичной или даже четвертичной структуры молекул клеточного прионного белка РгРс. Молекулярный механизм этого процесса связан с превращением части альфа-спиральных доменов в бета-тяжи. Такой процесс носит название конформационного процесса, подразумевающего лишь изменение пространственной структуры, но не изменение аминокислотного состава белковой молекулы . В настоящее время известно, что молекула белка РгРс состоит из четырех альфа-спиральных доменов, стабилизированных междоменными электростатическими взаимодействиями и S-S1-связью, в то время как в молекуле его изоформы РгР& два домена (Н3 и Н4) сохраняют свою первоначальную спирализованную форму, а два других (Н1 и Н2) превращаются в четыре бета-тяжа, связанных друг с другом и доменами Н3 и Н4 . Подобное превращение оказывается возможным под действием самой молекулы инфекционного прионного белка, а также в результате даже незначительных мутационных изменений в РгР-гене или может быть под воздействием каких-нибудь реакционно активных (наприимер, фосфорорганических) соединений . Иными словами, накопление инфекционных белковых молекул происходит за счет конформа-ции молекул белка РгРс, и такой процесс носит лавинообразный характер . Открытие прионов в 1982 г. было столь шокирующим, что его даже не смогли ни разу по достоинству оценить. И лишь спустя 15 лет автору была присуждена Нобелевская премия. В связи с открытием прионов вызываемые ими заболевания получили название «прионные болезни», широко используемые наряду с существующим обозначением ТГЭ .

    Особый интерес к проблеме прионов и прионных заболеваний вызван разразившейся с 1986 г. в Великобритании эпизоотией ТГЭ крупного рогатого скота (КРС; ТГЭ КРС). Заболевание было обусловлено массовым заражением молодняка, при выкармливании которого использовали зараженную инфекционным прионным белком мясокостную муку. Напомним, что ранее мясокостную муку широко использовали во многих странах при выкармливании телят, а также в бытовых условиях. Сырьем для мясокостной муки служат скелеты крупного и мелкого рогатого скота и другие, не идущие в пищу человека части туш коров и овец. В технологию получения такой муки после процессов тщательного измельчения исходного сырья включены также обработка активными жирорастворителями и термообработка при температуре 130оС. Однако в конце 1970-х годов в Великобритании предприниматели, решив повысить питательную ценность мясокостной муки, снизили режим термообработки до 110оС, а также уменьшили количество жи-рорастворителей. Именно эти изменения технологии и сыграли роковую роль в развитии эпизоотии КРС. Болезнь охватила все графства, число заболевших коров постоянно увеличивалось и в 1992 г. достигло пика - до 1000 в неделю .

    Клинически болезнь проявлялась, как выражаются ветеринары, в «потере животным кондиции», они стали особо чувствительными к прикосновению и звуку, подмечены нарушения психики: появляются страх и приступы бешенства («болезнь бешеной коровы»). При вскрытии в головном и иногда в спинном мозге обнаруживают гибель нейронов, формирование губкообразного состояния мозговой ткани и глиоз. На гистологических срезах ткани головного мозга выявляют присутствие инфекционного прионного белка РгР& в области вакуолизации и на поверхности еще сохранившихся нейронов .

    С июля 1988 г. в стране введен запрет на кормление жвачных животных белковосодержащими кормами,

    приготовленными из органов и тканей жвачных животных, и начиная с 1993 г., эпизоотия пошла на убыль. Однако в результате эпизоотии количество существующих ранее ТГЭ удвоилось: к известным скрепи, ТЭН и ХИБ оленей и лосей прибавились, кроме ТГЭ КРС трансмиссивная губкообразная энцефалопатия кошек и трансмиссивная губкообразная энцефалопатия экзотических копытных. Заболевание сначала бродячих, а затем и домашних кошек было обусловлено употреблением ими в пищу инфицированных мяса и внутренностей больных и погибших коров и быков. Случаи губкообразной энцефалопатии возникли и у находящихся в Лондонском зоопарке пумы, двух гепардов, оцелота и тигра. Причина проста - всех их в течение длительного времени кормили расколотыми головами и мясом крупного рогатого скота . Губкообразная энцефалопатия экзотических копытных описана у пяти видов диких животных: сернобыка, аравийского орикса, канны, сахарского орикса и большого куду. 17 случаев заболеваний среди этих животных в зоопарке также обусловлены использованием при их выкармливании мясокостной муки.

    Прионные болезни КРС, помимо Великобритании вскоре были зарегистрированы во Франции, Германии, Швейцарии, Италии, Португалии, Ирландии, Нидерландах, Дании, США, Омане, Китае и на Фолклендских островах. С годами этот список стран постепенно увеличивался и через 10 лет достиг уже 40, что связано либо с импортом уже зараженных животных, либо с использованием в этих странах инфицированнной мясокостной муки .

    Столь широкое распространение этой прионной болезни КРС естественно вызывало беспокойство по поводу возможности передачи заболевания от животных человеку, тем более что был уже твердо установлен путь передачи инфекционного агента с зараженной пищей. В марте 1996 г. это беспокойство было подкреплено сообщением, переданным Великобританией в ВОЗ, о 10 случаях смерти молодых людей от так называемого нового варианта БКЯ (нвБКЯ) . Через месяц о таком же случае сообщила Франция, а через год на территории Великобритании были выявлены еще 5 случаев этой болезни. К 1998 г. в мире стало известно о 24 случаях, а к настоящему времени их число уже превысило 200 в восьми странах Европы, а также в США, Канаде, Японии и Саудовской Аравии .

    В самом начале было подмечено, что нвБКЯ отличается от классической БКЯ рядом характерных симптомов. Болезнь поражает молодых людей в возрасте в среднем до 30 лет. В отличие от классической формы нвБКЯ в первую очередь проявляется в изменении личности: больной теряет интерес к своему хобби, начинает сторониться самых близких людей, поддается депрессии. Среди симптомов отмечают развитие тревожного состояния, бессонницу, хорею, миоклонус и прогрессирующую атаксию. Больной не может сам себя обслуживать, теряет способность самостоятельно принимать пищу. Поздно наступает слабоумие, и пациент осознает свое ухудшающееся положение. Патоморфологическая картина хотя и характерна для ТГЭ, но отличалась обязательным присутствием больших амилоидных бляшек в мозжечке и коре головного мозга, окруженных многочисленными вакуолями . Для выяснения причин возникновения нвБКЯ проведено сравнительное исследование на мышах трех штаммов инфекционного прионного белка РгР&, выделенного: 1) из мозговой ткани коровы, погибшей от ТГЭ КРС; 2) из мозговой ткани овцы, погибшей от скрепи; 3) из мозговой ткани молодого человека, погибшего от нвБКЯ. Результаты исследования по трем генетическим маркерам - продолжильность инку-

    бационного периода, скорость гибели зараженных мышей и профиль поражения ЦНС - подтвердили сходство прионов, выделенных от нвБКЯ, с прионами, выделенными именно только от коровы, погибшей от ТГЭ КРС .

    Степень чувствительности организмов к инфекционному прионному белку РгР& доноров определяется структурной близостью к нему клеточного прионного белка РгРс реципиента. Однако такая закономерность оказывается не абсолютной, а является лишь тенденцией, так как все приведенные выше примеры и главный из них - эпизоотия ТГЭ КРС с ее последствиями для других видов животных - прямо свидетельствуют о том, что увеличение дозы инфекционного материала и повышение частоты его введения способствуют успешному преодолению барьеров нечувствительности организма к инфекционному прионному белку . Кроме того, в определении природы чувствительности к прионным болезням большую роль играет генотип конкретного животного или человека. И этот генетический контроль обусловлен видом мутаций, происходящих в гене PRNP, кодирующем синтез клеточного прионного белка РгРс . Сегодня картированы более 40 хорошо изученных мутаций в гене PRNR При случаях спорадической БКЯ у пациентов обнаружена мутация в кодоне 178, при которой происходит замена аспарагиновой кислоты на аспарагин. Но если при этом кодон 129 кодирует валин, то действительно развивается БКЯ, а если же в положении 129 находится метионин, то развивается семейная смертельная бессонница. При мутации Про102Лей возникает синдром Герстманна-Штреусслера-Шейнкера . По мнению большинства исследователей, штам-мовые различия, кроме того, связаны с уровнем и стабильностью инфекционного прионного белка РгР&, а также с различной способностью последнего к процессу свертывания и превращения в скрепиассоциированные фибриллы, что в свою очередь может быть обусловлено различным соотношением альфа-спиральных доменов и бета-тяжей в молекуле в процессе конформационных изменений исходного клеточного прионного белка РгРс . Именно эти различия и определяют продолжительность инкубационного периода, форму и симптоматику инфекционного процесса . Так, например, сегодня известны по крайней мере шесть штаммов, вызывающих только спорадические прионные болезни

    Вместе с тем продолжается выявление новых прион-ных болезней человека. Так, кроме упомянутых выше случаев семейной смертельной бессонницы, начиная с 1999 г., в разных странах мира описаны в общей сложности 24 случая проявления так называемой спорадической смертельной бессонницы. Все пациенты обнаруживали клинические и нейропатологические признаки, сходные с семейной смертельной бессонницей, однако они отличались отсутствием семейной истории в анамнезе и соответствующих мутационных изменений в гене PRNP, хотя при этом все пациенты оказывались гомозиготными по метионину в кодоне 129 . Кроме того, в 2008 г. были впервые описаны прионные болезни, которые проявляли признаки, отличающие их от классических прионных заболеваний. Так, все 11 случаев имели характерные симптомы: более продолжительный инкубационный период, более тяжелые клинические проявления с атипичной деменцией и своеобразным ступенчатым электрофоретическим профилем, а главное - сниженной устойчивостью к протеазам нерастворимого инфекционного прионного белка. Болезнь получила название «про-теазачувствительная прионопатия» . Наконец, в минувшем году группа британских исследователей про-

    Таблица 3 Прионные болезни человека и животных

    Название заболевания

    Болезнь Крейтцфельдта-Якоба (БКЯ):

    спорадическая форма

    семейная форма

    ятрогенная форма

    Новый вариант БКЯ (нвБКЯ)

    Синдром Герстманна-Штреусслера-Шейнкера

    Смертельная семейная бессонница Спорадическая смертельная бессонница Протеазочувствительная нейропатия Нейропатия с диареей Скрепи

    Трансмиссивная энцефалопатия норок

    Хроническая изнуряющая болезнь

    Трансмиссивная губкообразная энцефалопатия крупного рогатого скота

    Губкообразная энцефалопатия кошек

    Губкообразная энцефалопатия экзотических копытных

    Овцы, козы

    Норки Олени, лоси Коровы, быки

    Антилопы, большой куду

    вела сложное исследование с целью выявления прионной патологии у 11 пациентов, страдающих специфической полинейропатией, прогрессирующим нарушением чувствительности в разных областях организма, хронической диареей, вздутием живота, синдромом раздражения толстой кишки. Установлено, что в гене PRNP пациентов присутствует мутация Y163X, провоцирующая образование аномальных прионных белков. В головном мозге выявлены спонгиоз, патологические изменения в спи-нальных ганглиях и периферических нервах. У всех пациентов снижен интеллект, нарушена память. В биоптате слизистой оболочки двенадцатиперстной кишки обнаружено накопление характерных для прионных болезней амилоидных бляшек. Авторы расценивают эти случаи как новое прионное заболевание, причиной которого является мутация Y163X, а основные проявления - стабильная диарея, расстройства вегетативной регуляции и сенсорная нейропатия . Все эти находки еще более увеличили список прионных болезней (табл. 3).

    При первых же попытках иммунодиагностики, иммунотерапии или иммунопрофилактики прионных болезней столкнулись с фактом полного отсутствия специфических антител в зараженном организме. Это становится понятным, учитывая структурную близость инфекционного прионного белка РгР& и его клеточной изоформы РгРС, в связи с чем организм рассматривает белок РгР& как свой, поэтому неудивительно, что испытания многих иммуномодуляторов практически заканчивались неудачей .

    Клиническая диагностика прионных болезней основывается на уже описанной выше симптоматике. Однако следует учитывать, что нарушения функции и когнитивные нарушения возникают прежде, чем клеточная дегенерация, и независимо от патологической агрегации инфекционного прионного белка РгР&, что может быть связано скорее с синаптической дисфункцией, чем с потерей нейронов .

    Лабораторная диагностика этих страданий включает прямые и непрямые методы. К первым из них относятся

    электронно-микроскопическое определение скрепиассо-циированных фибрилл, иммуноблоттинг с использованием моноклональных антител; метод пептидных зондов, основанный на использовании меченых синтетических пептидов, аминокислотная последовательность которых позволяет им связываться со структурой прионного белка. Важным шагом, имеющим как теоретическое, так и методическое значение, было получение антител при использовании в качестве антигена высокоочищенных прионов скрепи. Непрямые методы включают обычную гистологическую технику, благодаря которой в образцах биопсийного или аутосийного материала определяют глиоз, формирование губкообразного состояния мозговой ткани и накопление в ней амилоидных бляшек; гистохимический метод основывается на выявлении с помощью красителей скоплений амилоида; биологический метод включает заражение испытуемым материалом лабораторных животных (биопроба), что, однако, связано с длительностью наблюдения, или заражение клеточных культур . Для последнего варианта предложена культура клеток N2a (клетки нейробластомы мыши), заражение которой испытуемым материалом позволяет в 10 раз быстрее, чем с помощью биопробы, получить результат при сохранении того же уровня чувствительности .

    Профилактика прионных болезней основывается на недопущении в пищу инфицированных мясных продуктов или других продуктов убоя, а также на неиспользовании лекарственных препаратов, медицинских изделий и косметических средств, получаемых из органов и тканей КРС .

    Проблема лечения прионных болезней долгое время оставалась самой трудной, и все попытки применения лекарственных препаратов заканчивались наудачей. Наиболее перспективными рассматривались различные подходы, основанные на результатах молекулярно-биологических исследований трехмерной структуры прионов и изучения условий свертывания прионных белковых молекул и превращения их в скрепиподобные фибриллы и амилоидные образования . Однако в последние годы начали появляться сообщения, явно свидетельствующие о намечающихся серьезных успехах в этой области. Так, начиная с 2008 г., группы исследователей из Великобритании, используя лентивирусную промежуточную интерференционную РНК (iRNA) против нативного прионного белка, сообщили о первом терапевтическом вмешательстве ингибитора киназы PERK (protein kinase RNA-like endoplasmic reticulum kinase), которое спасало нейроны, прерывало развитие симптомов и повышало выживаемость мышей с прионным заболеванием .

    Наконец, недавно интернациональная группа из 17 исследователей, по-видимому, совершила прорыв в лечении прионных болезней . Используя циклическую амплификацию свертывания белков, удалось получить выраженное ингибирование размножения инфекционных прионных белков человека с помощью рекомби-нантного полноразмерного человеческого приона PrPC (rHuPrP23-231), который был не гликозилирован и не имел гликофосфатидилинозитолового якоря. Более того, rHuPrP23-231 также ингибировал размножение мышиных инфекционных прионов в культуре зараженных мышиных клеток. При этом авторы особо подчеркивают, что рекомбинантный прионный белок связывался именно с молекулами PrPSc , а не с молекулами PrPC, что наводит на мысль о том, что ингибирующий эффект ре-комбинантного белка PrP является результатом блокирования процесса взаимодействия PrPC и PrPSc. Авторы полагают, что полученные ими результаты обосновывают новый подход к лечению прионных заболеваний, при

    котором негликозилированный и незаякоренный собственный PrP пациента может быть использован для подавления размножения инфекционного прионного белка PrPSc без необходимости индукции иммунного ответа в организме .

    Появление нейродегенеративных заболеваний, основанных на нарушениях вторичной или третичной структуры белков, позволило ввести новое определение - «кон-формационные болезни», основным звеном в патогенезе которых являются нарушение пространственной конфигурации и укладка белковых молекул в клетке с последующим формированием нерастворимых агрегатов .

    ЛИТЕРАТУРА

    6. Львов Д.К., ред. Рождение и становление вирусологии. В кн.: Руководство по вирусологии. М.: МИА; 2013: 29-46.

    10. Зуев В.А. Медленные вирусные инфекции человека и животных. М.: Медицина; 1988; 57-64, 115-36.

    11. Мирчинк Е.П., Пронин А.В., Бартенева Н.С., Санин А.В., Хоробрых В.В., Зуев В.А. Иммунологический анализ патологии, развивающейся у мышей в результате их внутриутробного заражения вирусом гриппа. Вопросы вирусологии. 1984; 2: 162-6.

    12. Зуев В.А., Мирчинк Е.П., Харитонова А.М. Экспериментальные доказательства персистирующего в организме вируса гриппа вызывать медленную инфекцию. Вестник АМН СССР. 1985; 3: 26-31.

    15. Brander S., Whitfeld J., Boone K., Puwa A., O"Malley C., Linehan J.M. et al. Central and peripheral pathology of kuru: pathological analyses of a recent case and comparison with other forms of human prion disease. Phil. Trams. R. Soc. Biol. 2008; 363: 3755-63.

    16. Collinge J., Whitfeld D.J., McKintosh E., Beck J., Mead S., Thomas D.J. et al. Kuru in the 21st century - an aquired human prion disease with very long incubation period. Lancet. 2006; 367: 2068-74.

    23. Imran M., Mahmood S.V. An overview of human prion diseases. Virol. J. 2011; 8: 559-67.

    31. Miranda A., Ramos-Ibeas P., Pericuesta E., Ramirez M.A., Gutierraz-Adan A. The role of prion protein in stem cell regulation. Reproduction. 2013; 146: 91-9.

    32. Stella R., Massimino M.L., Sandri M., Sorgato M.C., Bertoli A. Cellular prion protein promotes regeneration of adult muscle A tissue. Mol. Cell. Biol. 2010; 30:4864-76.

    34. Lugaresi E., Medori P., Montagna P., Baruzzi A., Cortelli P., Lugaresi A. et al. Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N. Engl. J. Med. 1986; 315: 997-1003.

    36. Prusiner S.B. Prions and neurodegenerative diseases. N. Engl. J. Med. 1987; 317: 1571-781.

    38. Зуев В.А., Завалишин И.А., Ройхель В.М. Прионные болезни человека и животных. М.: Медицина; 1999: 136-42.

    39. Покровский В.И., Киселев О.И., Черкасский Б.Л. Прионы и прионные болезни. М.: Издательство РАМН; 2004: 146-52, 171-85.

    44. Gambetti P., Cali I., Notari S., Kong Q., Zou W.-Q., Surewicz W.K. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol. 2011; 121: 79-90.

    50. Mead S., Gaudhi S., Beck J., Caine D., Gajulapalli D., Carwell C. et al. A novel prion disease associated with diarrhea and neuropathy. N. Engl. J. Med. 2013; 369: 1904-14.

    52. Григорьев В.Б., Подкидышев А.Н., Кальков С.Л., Клименко С.М. Методы диагностики прионных заболеваний. Вопросы вирусологии. 2009; 5: 4-9.

    54. White M.D., Farmer M., Mirabile I., Brandner S., Collinge J., Mallucci G.R. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl. Asad. Sci. USA. 2008; 105: 10238-43.

    56. Carrell R.W., Lomas D.A. Conformational disease. Lancet. 1997; 350: 134-8.

    Поступила 13.03.14

    1. Sigurdsson B. Maedi, a sliow progressive pneumonia of sheep: An epi-zoological and a pathological study. Br. Vet. J. 1954; 110: 255-70.

    2. Sigurdsson B. Paratuberculosis (Johne"s disease) of heep in Iceland. Immunological studies and observations on its mode of spread. Br. Vet. J. 1954; 110: 307-22.

    3. Sigurdsson B. Rida, a chronic encephalitis of speep with general remarks on infections with develop slowly and some of their special characteristics. Br. Vet. J. 1954; 110: 341-54.

    4. Gajdusek D.C., Zigas V. Degenerative disease of the central nervous system in New Guinea; endemic occurrence of kuru in the native population. N. Engl. J. Med. 1957; 257: 974-8.

    5. Hadlow W.J. Scrapie and Kuru. Lancet. 1959; 2: 289-90.

    6. Lvov D.K., ed. The beginning and formation of virology. In: Manual of virology [ Rukovodstvo po virusologii]. Moscow. Meditsynskoe informatsionnoe agentstvo; 2013: 29-46. (in Russian)

    7. Sigurdsson B., Thormar H., Polson P.A. Cultivation of virus visna in tissue culture. Arch ges. Virusforsch. 1960; 10: 368-81.

    8. Horta-Barbosa L., Fucillo D., Sever J. et al. Subacute sclerosing panencephalitis; isolation of measles virus from a brain biopsy. Nature. 1969; 221: 974.

    9. Weller T.H., Neva F.A. Propagation in tissue of cytopathic agents-from patients with rubella-like illness. Proc. Soc. Exp. Biol. Med. 1962; 3: 215-25.

    10. Zuev V.A. In: Slow virus infections of human and animals . Moscow: Meditsina; 1988; 57-64, 115-36. (in Russian)

    11. Mirchink E.P., Pronin A.V., Barteneva N.S., Sanin A.V., Khorobrykh V.V., Zuev V.A. The immunological analysis of pathology that affects mice as a resul of intrauterine influenza virus infection. Voprosy virusologii. 1984; 2: 162-6. (in Russian)

    12. Zuev V.A., Mirchink E.P., Kharitonova A.M. The experimental proof that persistent in organism influenza virus causes slow infection. Vestnik AMN SSSR. 1985; 3: 26-31. (in Russian)

    13. Seale J. What we know about AIDS. New Sci. 1985; 107: 29-30.

    14. Chandler R.L. Encephalopathy in mice produced whit scrapie brain material. Lancet. 1961; 1: 1378-9.

    15. Brander S., Whitfeld J., Boone K., Puwa A., O"Malley C., Linehan J.M. et al. Central and peripheral pathology of kuru: pathological analyses of a recent case and comparison with other forms of human prion disease. Phil. Trans. R. Soc. Biol. 2008; 363: 3755-63.

    16. Collinge J., Whitfeld D.J., McKintosh E., Beck J., Mead S., Thomas D.J. et al. Kuru in the 21st century - an aquired human prion disease with very long incubation period. Lancet, 2006; 367: 2068-74.

    17. Gajdusek D.C. Subacure spongiform virus encephalopathies caused by unconventional viruses. In: Subviral Parthogenesis of plants and animals: viroids and prions. New York; 1985: 483-544.

    18. Gajdusek D.C. Unconventional viruses causing subacute spongiform encephalopathies. In: Fiedds B.N., ed. Virology. New York; 1985: 1519-57.

    19. Gibbs C.J., Gajdusek D.C., Asher D.T. et al. Creutzfeldt-Jakob disease (spongiform encephalopathy) transmission to the chimpanzee. Science. 1968; 161: 388-9.

    20. Alperovich A. Epidemiology of Creutzfeldt-Jakob disease - past and present uncertainties. Eur. J. Neurol. 1996; 3: 500-6.

    21. Lampert P.W., Gajdusek D.C., Gibbs C.J. Subacute spongiform virus encephalopathies: scrapie, kuru and Creutzfeldt-Jakob disease. A review. Am. J. Pathol. 1972; 68: 626-46.

    22. Duffy P., Wolf J., Collins G. Possible person-to-person transmission of Creutzfeldt-Jakob disease. N. Engl. J. Med. 1974; 290: 692-3.

    23. Imran M., Mahmood S.V. An overview of human prion diseases. Vi -rol. J. 2011; 8: 559-67.

    24. Bradley R. Animal prion diseases. In: Collinge J., Palmer M.S., eds. Prion Diseases. Oxford University Press; 1997: 89-129.

    25. Williams E.S., Young S.J. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 1980; 16: 89-98.

    26. Prusiner S.B. Novel proteinaceous infectious particles cause scrapie. Science. 1982; 216: 136-44.

    27. Bolton D.C., McKinley M.P., Prusiner S.B. Identification of protein that purifies with the scrapie prion. Science. 1982; 218: 1309-11.

    28. McKinley M.P., Bolton D.C., Prusiner S.B. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983; 35: 57-62.

    29. Ford M.J., Burton L.J., Morris R.J., Hall S.M. Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience. 2002; 113: 177-92.

    30. Parchi P., Saverioni D. Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012; 50(1): 20-45.

    31. Miranda A., Ramos-Ibeas P., Pericuesta E., Ramirez M.A., Gutier-raz-Adan A. The role of prion protein in stem cell regulation. Reproduction. 2013; 146: 91-9.

    32. Stella R., Massimino M.L., Sandri M., Sorgato M.C., Bertoli A. Cellular prion protein promotes regeneration of adult muscle A tissue. Mol. Cell. Biol. 2010; 30: 4864-76.

    33. Colby D.W., Prusiner S.B. Prions. Cold Spring Harb. Perspect. Biol. 2011, 3(1): a006833.

    34. Lugaresi E., Medori P., Montagna P., Baruzzi A., Cortelli P., Luga-resi A. et al. Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. N. Engl. J. Med. 1986; 315: 997-1003.

    35. Baldin E., Capellari C., Provini F.,Corrado P., Liguori l., Parchi P. et al. A case of fatal familial insomnia in Africa. J. Neurol. 2009; 256: 778-9.

    36. Prusiner S.B. Prions and neurodegenerative diseases. N. Engl. J. Med 1987; 317: 1571-781.

    37. Collinge J., Palmer M.S. Human prion diseases. In: Collinge J., Palmer M.S., eds. Prion diseases. Oxford University Press; 1997: 18-48.

    38. Zuev V.A., Zavalishin I.A., Roiykhel V.M. Prion diseases of human and animals (Prionnye bolezni cheloveka i zhivotnyk). Moscow: Meditsina; 1999: 136-42. (in Russian)

    39. Pokrovskiy V.I., Kiselev O.I., Cherkasskiy B.L. Prions and prion diseases (Priony iprionnye bolezni). Moscow: Izd-vo RAMN; 2004: 146-52, 171-85. (in Russian)

    40. Will R.J., Ironside J.W., Zeidler M., Cousens S.N., Estieiro K., Alperovich A et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet. 1996; 347: 921-5.

    41. Chazot G., Brousolle E., Lapras C.I, Blatter T., Aguzzi A., Kopp N. New variant of Creutzfeldt-Jakob disease in a 26-year-old French man. Lancet. 1996; 347: 1181.

    42. Collinge J., Sidle K.C., Meads J., Ironside J., Hill A.F. Molecular analysis of prion strain variation and the aetiology of «new variant» CJD. Nature. 1996; 383: 685-90.

    43. Safar J.G. Molecular pathogenesis of sporadic prion diseases in man. Prion. 2012; 6(2): 108-15.

    44. Gambetti P., Cali I., Notari S., Kong Q , Zou W.-Q., Surewicz W.K. Molecular biology and pathology of prion strains in sporadic human prion diseases. Acta Neuropathol. 2011; 121: 79-90.

    45. Caughey R., Raymond G.J., Ressen R.A. Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem. 1998; 273: 32230-5.

    46. Mastrianni J.A., Nixon R., Layzer R., Telling G.C., Han D., DeA-mond S.J. et al. Prion protein conformation in a patient with sporadic fatal insomnia. N. Engl. J. Med. 1999; 340: 1630-8.

    47. Priano L., Giaccone G., Mangien M., Albani G., Limido L., Brioschi A. et al. An atypical case of sporadic fatal insomnia. J. Neurol. Neu-rosurg. Psychiatry. 2009; 80: 924-7.

    48. Gambetti P., Dong Z., Yuan J., Xiao X., Zheng M., Alshekhlee A. et al. A novel human disease with abnormal prion protein sensitive to protease. Ann. Neurol. 2008; 63: 697-708.

    49. Zou W.Q., Puoti G., Xiao X., Yuan J., Qing L., Cali I. et al. Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein. Ann. Neurol. 2010; 68: 162-72.

    50. Mead S., Gaudhi S., Beck J., Caine D., Gajulapalli D., Carwell C. et al. A novel prion disease associated with diarrhea and neuropathy. N. Engl. J. Med 2013; 369: 1904-14.

    51. Mallucci G.R. Prion neurodegeneration. Prion. 2009; 3: 195-201.

    52. Grigoriev V.B., Podkidyshev A.N., Kalkov S.L., Klimenko S.M. Methods for diagnosis of prion diseases. Voprosy virusologii. 2009; 5: 4-9. (in Russian)

    53. Bulter D.A., Scott M.R., Bockman J.M., Borchelt D.R., Taraboulos A., Hsiao K.K. et al. Scrapie infected murine neuroblastoma cells produce protease-resistant prion proteins. J. Virol. 1988; 62(5): 1558-64.

    54. White M.D., Farmer M., Mirabile I., Brandner S., Collinge J., Mal-lucci G.R. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl. Asad Sci. USA. 2008; 105: 10238-43.

    55. Yuan J., Zhan Y.-A., Abskharon R., Xiao X., Martinez M.C., Zhou X. et al. Recombinant human prion protein inhibits prion propagation in vitro. Sci. Rep. 2013; 3: Article 2911.

    Медленные вирусные инфекции (МВИ) характеризуются следующими признаками:
    1) необычно длительным инкубационным периодом (месяцы, годы);
    2) своеобразным поражением органов и тканей, преимущественно ЦНС;
    3) медленным неуклонным прогрессированием заболевания;
    4) неизбежным летальным исходом.

    Рис. 4.68.

    Превращение PrP в измененные формы (PrPdc4 и др.) происходит при нарушении кинет ически конт ролируемого равновесия между ними. Процесс усиливается при возрастании количества патологического (PrP) или экзогенного приона. РгР-нормальный белок, заякоренный в мембране клетки (1). PrPsc-глобулярный гидрофобный белок, образующий агрегаты с собой и с PrP на поверхности клетки (2): в результате PrP (3) преобразуется в PrPsc(4). Клетка синтезирует новый PrP (5), и далее цикл продолжается. Патологическая форма PrP" (6) накапливается в нейронах, придавая клетке губкообразный вид. Патологические изоформы приона могут образовываться при участии шаперонов (от англ. chaperon - временное сопровождающее лицо), участвующих в правильном сворачивании полипептидной цепи агрегируемого белка, ее преобразовании в процессе агрегации

    Медленные вирусные инфекции могут вызывать вирусы, известные как возбудители острых вирусных инфекций. Например, вирус кори иногда вызывает подострый склерозирующий панэнцефалит, вирус краснухи - прогрессирующие врожденную краснуху и краснушный панэнцефалит (табл. 4.22).
    Типичную медленную вирусную инфекцию животных вызывает вирус Мэди/Висна, относящийся к ретровирусам. Он является возбудителем медленной вирусной инфекции и прогрессирующей пневмонии овец.
    Сходные по признакам медленных вирусных инфекций заболевания вызывают прионы - возбудители прионных болезней.

    Прионы

    Прионы - белковые инфекционные частицы (транслитерация от сокр. англ. proteinacous infection particle ). Прионный белок обозначается как PrP (англ. prion protein), он может быть в двух изоформах: клеточной, нормальной (PrPс) и измененной, патологической (PrPк). Ранее патологические прионы относили к возбудителям медленных вирусных инфекций, теперь более правильно их относить к возбудителям конформационных болезней*, вызывающим диспротеиноз.

    * Предполагают существование болезней конформации белков, возникающих в результате неправильного сворачивания (нарушения правильной конформации) клеточного белка, необходимого для нормального функционирования организма. Сворачивание, или фолдинг (ai irn. folding - сворачивание), вновь синтезированных клеточных белков в правильную функциональную конформацию обеспечиваюг особые белки - шапероны.

    Таблица 4.23. Свойства прионов

    PrPc (cellular prion protein)

    PrPsc (screpie prion protein)

    PrPc - клеточная, нормальная изоформа прионного белка с мол. массой 33-35 кД детерминируется геном прионного белка (прионный ген - PrNP находится на коротком плече 20-й хромосомы человека). Нормальный РгР" появляется на поверхности клетки (заякорен в мембрану гликопротеином молекулы), чувствителен к протеазе. Возможно, он регулирует суточные циклы гормонов, передачу нервных импульсов, поддерживает циркадианные ритмы и метаболизм меди в ЦНС.

    PrPsc* (от названия прионной болезни овец скрепи - scrapie) и другие, например PrPc|d (при болезни Крейтцфельдта-Якоба) - патологические, измененные посттрансляционными модификациями, изоформы прионного белка с мол. массой 27-30 кД. Такие прионы устойчивы к протеолизу (к протеазе К), к излучениям, высокой температуре, формальдегиду, глютаральдегиду, бета- пропиолактону; не вызывают воспаления и иммунной реакции. Отличаются способностью к агрегации в амилоидные фибриллы, гидрофобностью и вторичной структурой в результате повышенного содержания бета-складочных структур (более 40 % по сравнению с 3% у PrPc). PrPsc накапливается в плазматических везикулах клетки.

    Прионы - неканонические патогены, вызывающие трансмиссивные губкообразные энцефалопатии: человека (куру, болезнь Крейтцфельдта-Якоба, синдром Герстманна-Штре- усслера-Шейнкера, семейная фатальная бессоница, амиотрофический лейкоспонгиоз?); животных (скрепи овец и коз, трансмиссивная энцефалопатия норок, хроническая изнуряющая болезнь находящихся в неволе оленя и лося, губкообразная энцефалопатия крупного рогатого скота, губкообразная энцефалопатия кошек).
    Прионные инфекции характеризуются губкообразными изменениями мозга (трансмиссивные губкообразные энцефалопатии). При этом развиваются церебральный амилоидоз (внеклеточный диспротеиноз, характеризующийся отложением амилоида с развитием атрофии и склероза ткани) и ас- троцитоз (разрастание астроцитарной нейроглии, гиперпродукция глиальных волокон). Образуются фибриллы, агрегаты белка или амилоида.

    Краткая характеристика основных представителей
    Куру - прионная болезнь , ранее распространенная среди папуасов (в переводе означает «дрожание» или «дрожь») на острове Новая Гвинея в результате ритуального каннибализма - поедания недостаточно термически обработанного инфицированного прионами мозга погибших сородичей. В результате поражения ЦНС нарушаются движения, походка, появляются озноб, эйфория («хохочущая смерть»). Летальный исход - через год. Инфекционные свойства болезни доказал К. Гайдушек.

    Болезнь Крейтцфельдта-Якоба (БКЯ) - прионная болезнь, протекающая в виде деменции, зрительных и мозжечковых нарушений и двигательных расстройств со смертельным исходом через 9 месяцев болезни. Инкубационный период от 1,5 до 20 лет. Возможны различные пути инфицирования и причины развития болезни: 1) при употреблении недостаточно термически обработанных продуктов животного происхождения, например мяса, мозга коров, больных губкообразной энцефалопатией крупного рогатого скота, а также; 2) при трансплантации тканей, например роговицы глаза, при применении гормонов и других биологически активных веществ животного происхождения, при использовании кетгута, контаминированных или недостаточно простерили- зованных хирургических инструментов, при прозекторских манипуляциях; 3) при гиперпродукции PrP и других состояниях, стимулирующих процесс преобразования PrPc в PrPsc. Заболевание может развиваться в результате мутации или
    вставки в области прионового гена. Распространен семейный характер болезни в результате генетической предрасположенности к БКЯ.

    Синдром Герстманна-Штреусслера-Шейнкера - прионная болезнь, с наследственной патологией (семейное заболевание), протекающая с деменцией, гипотонией, нарушением глотания, дизартрией. Нередко носит семейный характер. Инкубационный период - от 5 до 30 лет. Летальный исход - через 4-5 лет.

    Фатальная семейная бессонница - аутосомно-доминантное заболевание с прогрессирующей бессонницей, симпатической гиперреактивностью (гипертензия, гипертермия, гипергидроз, тахикардия), тремором, атаксией, миоклониями, галлюцинациями. Нарушаются циркадианные ритмы. Смерть наступает при прогрессирующей сердечно-сосудистой недостаточности.

    Скрепи (от англ. scrape - скрести) - «чесотка», прионная болезнь овец и коз, характеризующаяся сильным кожным зудом, поражением ЦНС, прогрессирующим нарушением координации движений и неизбежной гибелью животного.

    Губкообразная энцефалопатия крупного рогатого скота - прионная болезнь крупного рогатого скота, характеризующаяся поражением ЦНС, нарушением координации движений и неизбежной гибелью животного. Инкубационный период - от 1,5 до 15 лет. Наиболее инфицированы мозг и глазные яблоки животных.

    Лабораторная диагностика . Для прионной патологии характерны губкообразные изменения мозга, астроцитоз (гли-
    оз), отсутствие инфильтратов воспаления; ткань мозга окрашивают на амилоид. В цереброспинальной жидкости выявляют белковые маркеры прионных мозговых нарушений (с помощью ИФА, иммуноблотинга с моноклональными антителами). Проводят генетический анализ прионного гена; ПЦР для выявления PrP.

    Профилактика . Введение ограничений на использование лекарственных препаратов животного происхождения. Прекращение производства гормонов гипофиза животного происхождения. Ограничение трансплантации твердой мозговой оболочки. Использование резиновых перчаток при работе с биологическими жидкостями больных.

    Медленные вирусные инфекции — группа вирусных заболеваний человека и животных, характеризующихся продолжительным инкубационным периодом, своеобразием поражений органов и тканей, медленным течением со смертельным исходом. Учение о М.в.и. основано на многолетних исследованиях Сигурдссона (В. Sigurdsson), опубликовавшего в 1954 г. данные о неизвестных ранее массовых заболеваниях овец. Эти заболевания представляли собой самостоятельные нозологические формы, однако имели и ряд общих черт: длительный инкубационный период, продолжающийся несколько месяцев или даже лет; затяжное течение после появления первых клинических признаков; своеобразный характер патогистологических изменений в органах и тканях; обязательный смертельный исход. С тех пор эти признаки служат критерием для отнесения заболевания к группе М.в.и. Спустя три года Гайдушек и Зигас (D.С. Gajdusek, V. Zigas) описали неизвестное заболевание папуасов на о. Новая Гвинея с многолетним инкубационным периодом, медленно прогрессирующей мозжечковой атаксией и дрожанием, дегенеративными изменениями только в ц.н.с., всегда заканчивающееся смертью. Болезнь получила название «куру» и открыла собой список медленных вирусных инфекций человека, пополняющийся до сих пор.

    На основании сделанных открытий первоначально возникло предположение о существовании в природе особой группы медленных вирусов. Однако вскоре была установлена его ошибочность, во-первых, благодаря открытию у ряда вирусов, являющихся возбудителями острых инфекций (например, у вирусов кори, краснухи, лимфоцитарного хориоменингита, герпеса), способности вызывать также медленные вирусные инфекции, во-вторых, — в связи с обнаружением у возбудителя типичной М.в.и. — вируса висны — свойств (структуры, размеры и химический состав вирионов, особенности репродукции в клеточных культурах), характерных для широкого круга известных вирусов. В соответствии с особенностями этиологических агентов М.в.и. подразделяют на две группы: к первой относятся М.в.и., вызываемые вирионами, ко второй — прионами (инфекционными белками). Прионы состоят из белка с молекулярной массой 27 000—30 000. Отсутствие в составе прионов нуклеиновых кислот определяет необычность некоторых из свойств: устойчивость к действию b-пропиолактона, формальдегида, глутаральдегида, нуклеаз, псораленов, УФ-излучения, ультразвука, ионизирующего излучения, к нагреванию до t° 80° (при неполной инактивации даже в условиях кипячения). Ген, кодирующий прионовый белок, находится не в составе приона, а в клетке. Прионовый белок, попадая в организм, активирует этот ген и вызывает индукцию синтеза аналогичного белка.

    Вместе с тем прионы (называемые также необычными вирусами) при всем своем структурном и биологическом своеобразии обладают рядом свойств обычных вирусов (вирионов). Они проходят через бактериальные фильтры, не размножаются на искусственных питательных средах, репродуцируются до концентраций 10 5 —10 11 на 1 г мозговой ткани, адаптируются к новому хозяину, изменяют патогенность и вирулентность, воспроизводят феномен интерференции, обладают штаммовыми различиями, способностью к персистенции в культуре клеток, полученных из органов зараженного организма, могут быть клонированы. Группа М.в.и., вызываемых вирионами, включает около 30 заболеваний человека и животных. Вторая группа объединяет так называемые подострые трансмиссивные губкообразные энцефалопатаи, включающие четыре М.в.и. человека (куру, болезнь Крейтцфельдта — Якоба, синдром Герстманна — Штраусслера, амиотрофический лейкоспонгиоз) и пять М.в.и. животных (скрепи, трансмиссивную энцефалопатию норок, хроническую изнуряющую болезнь находящихся в неволе оленей и лосей, губкообразную энцефалопатию коров). Кроме упомянутых существует группа заболеваний человека, каждое из которых по клиническому симптомокомплексу, характеру течения и исходу соответствует признакам М.в.и., однако причины этих заболеваний точно не установлены и поэтому их причисляют к категории М.в.и. с предполагаемой этиологией. К ним относят вилюйский энцефаломиелит, рассеянный склероз, амиотрофический боковой склероз, болезнь Паркинсона (см. Паркинсонизм) и ряд других. Эпидемиология М.в.и. имеет ряд особенностей, прежде всего связанных с их географическим распространением. Так, куру эндемична для восточного плоскогорья о. Новая Гвинея, а вилюйский энцефаломиелит — для районов Якутии, главным образом примыкающих к р. Вилюй. Рассеянный склероз не известен на экваторе, хотя заболеваемость в северных широтах (то же для южного полушария) достигает 40—50 на 100 000 чел.

    При повсеместном относительно равномерном распространении амиотрофического бокового склероза заболеваемость на о. Гуам в 100 раз, а на о. Новая Гвинея в 150 раз выше, чем в других частях света. При врожденной краснухе, синдроме приобретенного иммунодефицита (см. ВИЧ-инфекция), куру, Крейтцфельдта — Якоба болезни и др. источником инфекции является больной человек. При прогрессирующей многоочаговой лейкоэнцефалопатии, рассеянном склерозе, болезни Паркинсона, вилюйском энцефаломиелите, амиотрофическом боковом склерозе, рассеянном склерозе источник не известен. При М.в.и. животных источником инфекции служат больные животные. При алеутской болезни норок, лимфоцитарном хориоменингите мышей, инфекционной анемии лошадей, скрепи существует риск заражения людей. Механизмы передачи возбудителей разнообразны и включают контактный, аспирационный и фекально-оральный; возможна также передача через плаценту. Особую эпидемиологическую опасность представляет такая форма течения М.в.и. (например, при скрепи, висне и др.), при которой скрытое вирусоносительство и типичные морфологические изменения в организме протекают бессимптомно. Патогистологические изменения при М.в.и. можно подразделить на ряд характерных процессов, среди которых прежде всего следует назвать дегенеративные изменения в ц.н.с. (у человека — при куру, болезни Крейтцфельдта — Якоба, амиотрофическом лейкоспонгиозе, амиотрофическом боковом склерозе, болезни Паркинсона, вилюйском энцефаломиелите; у животных — при подострых трансмиссивных губкообразных энцефалопатиях, медленной гриппозной инфекции мышей и др.). Нередко поражения ц.н.с. сопровождаются процессом демиелинизации, особенно ярко выраженным при прогрессирующей многоочаговой лейкоэнцефалопатии.

    Воспалительные процессы достаточно редки и, например, при подостром склерозирующем панэнцефалите, прогрессирующем краснушном панэнцефалите, висне, алеутской болезни норок носят характер периваскулярных инфильтратов. Общей патогенетической основой М.в.и. является накопление возбудителя в различных органах и тканях зараженного организма задолго до первых клинических проявлений и длительное, иногда многолетнее, размножение вирусов нередко и в тех органах, в которых никогда не обнаруживают патогистологических изменений. При этом важным патогенетическим механизмом М.в.и. служит цитопролиферативная реакция различных элементов. Так, например, губкообразные энцефалопатии характеризуются выраженным глиозом, патологической пролиферацией и гипертрофией астроцитов, что и влечет за собой вакуолизацию и гибель нейронов, т.е. развитие губкообразного состояния ткани мозга. При алеутской болезни норок, висне и подостром склерозирующем панэнцефалите наблюдается резко выраженная пролиферация элементов лимфоидной ткани.

    Многие М.в.и., такие как прогрессирующая многоочаговая лейкоэнцефалопатия, лимфоцитарный хориоменингит новорожденных мышей, прогрессирующая врожденная краснуха, медленная гриппозная инфекция мышей, инфекционная анемия лошадей и др., могут быть обусловлены выраженным иммунодепрессирующим действием вирусов, образованием иммунных комплексов вирус — антитело и последующим повреждающим действием этих комплексов на клетки тканей и органов с вовлечением в патологический процесс аутоиммунных реакций. Ряд вирусов (вирусы кори, краснухи, герпеса, цитомегалии и др.) способны вызывать М.в.и. в результате внутриутробного заражения плода. Клиническому проявлению М.в.и. иногда (куру, рассеянный склероз, вилюйский энцефа-ломиелит) предшествует период предвестников. Только при вилюйском энцефаломиелите, лимфоцитарном хориоменингите у людей и инфекционной анемии лошадей заболевания начинаются с повышения температуры тела. В большинстве же случаев М.в.и. возникают и развиваются без температурной реакции организма. Все подострые трансмиссивные губкообразные энцефалопатии, прогрессирующая многоочаговая лейкоэнцефалопатия, болезнь Паркинсона, висна и др. проявляются нарушениями походки и координации движений. Нередко эти симптомы оказываются наиболее ранними, позднее к ним присоединяются гемипарезы и параличи. При куру и болезни Паркинсона характерно дрожание конечностей; при висне, прогрессирующей врожденной краснухе — отставание в массе тела и росте. Течение М.в.и., как правило, прогрессирующее, без ремиссий, хотя при рассеянном склерозе и болезни Паркинсона могут наблюдаться ремиссии, увеличивающие продолжительность заболеваний до 10—20 лет. Лечение не разработано. Прогноз при М.в.и. неблагоприятный.

    Библиогр.: Зуев В.А. Медленные вирусные инфекции человека и животных, М., 1988, библиогр.

    Возбудители медленных вирусных инфекций – так называемые медленные вирусы, вызывают поражение головного мозга. Подострый склерозирующий панэнцефалит, прогрессирующий краснушный панэнцефалит «на совести» уже известных нам вирусов кори и краснухи. Эти болезни встречаются нечасто, но, как правило, протекают очень тяжело и заканчиваются смертельно. Еще реже наблюдается прогрессирующая многофокусная лейкоэнцефалопатия, которую вызывают два вируса – полиомы и вакуолизирующий вирус обезьян SV 40. Третий представитель этой группы – вирус папилломы – является причиной возникновения обычных бородавок. Сокращенные наименования вирусов папилломы, полиомы и вакуолизирующего вируса SV 40 составили название всей группы вирусов – паповавирусы.

    Рисунок 5 – Вирус кори

    Из других медленных вирусных инфекций упомянем болезнь Крейтцфельдта-Якоба. У больных наблюдаются снижение интеллекта, развитие парезов и параличей, а затем кома и смерть. К счастью, число таких больных невелико, приблизительно один на миллион.

    Близкая по клинической картине болезнь, называемая Куру, обнаружена на Новой Гвинее у сравнительно немногочисленной народности форе. Болезнь была связана с ритуальным каннибализмом – поеданием мозгов родственников, умерших от Куру. Наибольшей опасности заразиться были подвержены женщины и дети, которые принимали самое непосредственное участие в извлечении, приготовлении и поедании заразных мозгов. Вирусы, по-видимому, проникали через порезы и расчесы кожи. Запрещение каннибализма, которого добился один из пионеров изучения Куру американский вирусолог Карлтон Гайдушек, привело практически к прекращению этого смертельного заболевания.

    Вирусы и рак.

    Из всех известных способов сосуществования вирусов и клеток наиболее загадочен вариант, при котором генетический материал вируса объединяется с генетическим материалом клетки. В результате вирус становится как бы нормальным компонентом клетки, передаваясь при делении из поколения в поколение. Первоначально процесс интеграции был детально изучен на модели бактериофагов. Давно известны бактерии, способные образовывать бактериофаги без заражения, как бы самопроизвольно. Свойство производить бактериофаг они передают по наследству своему потомству. Бактериофаг, полученный из этих так называемых лизогенных бактерий, называют умеренным, если им заразить чувствительные бактерии, то размножения бактериофага и гибели микроорганизмов не происходит. Бактериофаг в этих бактериях переходит в неинфекционную форму. Бактерии продолжают хорошо расти на питательных средах, имеют обычную морфологию и отличаются от незараженных только тем, что приобретают устойчивость к повторному заражению. Они передают бактериофаг по наследству своему потомству, в котором разрушается и погибает только ничтожно малая часть (1 из 10 тыс.) дочерних клеток. Создается впечатление, что в этом случае в борьбе с бактериофагом победила бактерия. На самом деле это не так. Когда лизогенные бактерии попадают в неблагоприятные условия, подвергаются облучению ультрафиолетовыми и рентгеновскими лучами, воздействию сильных окислителей и т.п., «замаскированный» вирус активизируется и переходит в полноценную форму. Большинство клеток при этом распадается и начинает образовывать вирусы, как при обычной острой инфекции. Это явление называется индукцией, а факторы, ее вызывающие, - индуцирующими.

    Явление лизогении исследовали в различных лабораториях мира. Был накоплен большой экспериментальный материал, показывающий, что умеренные бактериофаги существуют внутри бактерии в виде так называемых профагов, представляющих собой объединение (интеграцию) бактериофагов с хромосомами бактерий. Профаг синхронно размножается вместе с клеткой и представляет с ней как бы единое целое. Являясь своеобразной субъединицей клетки, профаги в то же время выполняют свою собственную функцию – они несут генетическую информацию, необходимую для синтеза полноценных частиц данного типа фага. Это свойство профага реализуется, как только бактерии попадают в неблагоприятные условия, индуцирующие факторы нарушают связи между хромосомой бактерии и профагом, активизируя его. Лизогения широко распространена в природе. У некоторых бактерий (например, у стафилококков, бактерий брюшного тифа) почти каждый представитель является лизогенным.

    Известно около 40 вирусов, вызывающих лейкозы, рак и саркому у холоднокровных (лягушки), пресмыкающихся (змеи), птиц (куры) и млекопитающих (мыши, крысы, хомяки, обезьяны). При введении таких вирусов здоровым животным наблюдается развитие злокачественного процесса. Что касается человека, то здесь дело обстоит много сложнее. Основная трудность работы с вирусами – кандидатами на роль возбудителей рака и лейкоза человека – связана с тем, что подобрать подходящее лабораторное животное обычно не удается. Однако недавно был открыт вирус, вызывающий лейкоз у человека.

    Советский вирусолог Л.А. Зильбер в 1948-1949 гг. разработал вирусогенетическую теорию происхождения рака. Предполагается, что нуклеиновая кислота вируса объединяется с наследственным аппаратом (ДНК) клетки, как в описанном выше случае лизогении с бактериофагами. Такое внедрение не происходит без последствий: клетка приобретает ряд новых свойств, одно из которых – способность к ускоренному размножению. Так возникает очаг молодых быстроделящихся клеток; они приобретают способность к безудержному росту, в результате чего образуется опухоль.

    Онкогенные вирусы малоактивны и не способны разрушать клетку, но могут вызвать в ней наследственные изменения, причем опухолевые клетки как будто бы больше не нуждаются в вирусах. Действительно, в уже возникших опухолях вирусы часто не обнаруживаются. Это позволило предположить, что вирусы в развитии опухоли играют как бы роль спички и могут не принимать участия в возникшем пожаре. На самом же деле вирус постоянно присутствует в опухолевой клетке и поддерживает ее в перерожденном состоянии.

    Очень важные открытия, касающиеся механизма возникновения рака, сделаны недавно. Ранее было замечено, что после заражения клеток онкогенными вирусами наблюдаются необычные явления. Зараженные клетки, как правило, сохраняют нормальный вид, и никаких признаков болезни обнаружить не удается. При этом вирус в клетках словно исчезает. В составе онкогенных РНК-содержащих вирусов обнаружен специальный фермент – обратная транскриптаза, осуществляющая синтез ДНК на РНК. После возникновения ДНК-копий они объединяются с ДНК клеток и передаются их потомству. Эти так называемые провирусы можно обнаружить в составе ДНК клеток различных животных, зараженных онкогенными вирусами. Итак, в случае интеграции «секретная служба» вирусов маскируется и может долгое время ничем себя не проявлять. При более внимательном изучении оказывается, что эта маскировка неполная. Присутствие вируса можно обнаружить по появлению новых антигенов на поверхности клеток – они так и называются поверхностными антигенами. Если клетки содержат в своем составе онкогенные вирусы, они обычно приобретают способность к безудержному росту или трансформируются, а это, в свою очередь, является чуть ли не первым признаком злокачественного роста. Доказано, что трансформацию (переход клеток к злокачественному росту) вызывает специальный белок, который закодирован в геноме вируса. Беспорядочное деление приводит к образованию очагов или фокусов трансформации. Если это происходит в организме, возникает предрак.



    Появление на клеточных мембранах новых поверхностных опухолевых антигенов делает их «чужими» для организма, и они начинают распознаваться иммунной системой как мишень. Но почему же тогда развиваются опухоли? Здесь мы вступаем в область предположений и догадок. Известно, что опухоли чаще возникают у пожилых людей, когда иммунная система становится менее активной. Возможно, скорость деления трансформированных клеток, которая носит безудержный характер, обгоняет иммунный ответ. Возможно, наконец, и этому есть много доказательств, онкогенные вирусы подавляют иммунную систему или, как принято говорить, оказывают иммуносупрессорное действие. В некоторых случаях иммуносупрессию вызывают сопутствующие вирусные заболевания или даже лекарства, которые дают больным, например, при пересадке органа или ткани, чтобы подавить грозную реакцию их отторжения.

    Полезные вирусы.

    Существуют и полезные вирусы. Сначала были выделены и испытаны вирусы – пожиратели бактерий. Быстро и безжалостно расправлялись они со своими ближайшими родственниками по микромиру: палочки чумы, брюшного тифа, дизентерии, вибрионы холеры буквально таяли на глазах после встречи с этими безобидными на вид вирусами. Естественно, их стали широко применять для предупреждения и лечения многих инфекционных болезней, вызываемых бактериями (дизентерия, холера, брюшной тиф). Однако за первыми успехами последовали неудачи. Это было связано с тем, что в организме человека бактериофаги действовали на бактерии не так активно, как в пробирке. Кроме того, бактерии очень быстро приспосабливались к бактериофагам и становились нечувствительными к их действию. После открытия антибиотиков бактериофаги как лекарство отступили на задний план. Но до сих пор их с успехом используют для распознавания бактерий, т.к. бактериофаги умеют очень точно находить «свои бактерии» и быстро растворять их. Это очень точный метод, который позволяет определять не только виды бактерий, но и их разновидности.

    Полезными оказались вирусы, поражающие позвоночных животных и насекомых. В 50-х годах XX века в Австралии остро встала проблема борьбы с дикими кроликами, которые быстрее саранчи уничтожали посевы сельскохозяйственных культур и приносили огромный экономический ущерб. Для борьбы с ними использовали вирус миксоматоза. В течение 10-12 дней этот вирус способен уничтожить практически всех зараженных животных. Для его распространения среди кроликов использовали зараженных комаров, которые сыграли роль «летающих игл».

    Можно привести и другие примеры успешного использования вирусов для уничтожения вредителей. Все знают, какой ущерб приносят гусеницы и жуки-пилильщики. Они поедают листья полезных растений, угрожая порой садам и лесным массивам. С ними сражаются так называемый вирус полиэдроза и гранулеза. На небольших участках их распыляют пульверизаторами, а для обработки больших площадей используют самолеты. Так поступили в Калифорнии при борьбе с гусеницами, которые поражали поля люцерны, а в Канаде для уничтожения соснового пилильщика. Перспективно также применение вирусов для борьбы с гусеницами, поражающими капусту и свеклу, а также для уничтожения домашней моли.

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то