Рентгенологическое исследование. Современные методы рентгенологических исследований Рентгеноскопия методика

Физические основы и методы рентгеновских исследований

1. Источники рентгеновского излучения

Рентгеновское излучение было открыто немецким физиком Рентгеном в 1895 году. Сам Рентген назвал его Х-лучами. Оно возникает при торможении веществом быстрых электронов. Рентгеновское излучение получают с помощью специальных электронно-вакуумных приборов – рентгеновских трубок.

В стеклянной колбе, давление в которой равно 10 -6 мм рт.ст., находятся анод и катод. Анод выполнен из меди с вольфрамовой насадкой. Анодное напряжение рентгеновских трубок составляет 80 – 120 кВ. Электроны, вылетевшие из катода, разгоняются электрическим полем и тормозятся на вольфрамовой насадке анода, которая имеет скос под углом 11–15 о . Рентгеновское излучение выходит из колбы через специальное кварцевое окно.

Важнейшими параметрами рентгеновского излучения являются длина волны и интенсивность. Если предположить, что торможение электрона на аноде происходит мгновенно, то вся его кинетическая энергия е U a переходит в излучение:

. (1)

В действительности торможение электрона занимает конечное время, и частота излучения, определяемая из уравнения (1), является максимально возможной:

. (2)

С учетом (с – скорость света) находим минимальную длину волны

. (3)

Подставляя величины h , c , e в формулу (3) и выражая анодное напряжение в киловольтах, получим длину волны в нанометрах:

=. (4)

Например, при анодном напряжении 100 кВ длина волны рентгеновского излучения будет равна 0,012 нм, т.е. примерно в 40000 раз короче средней длины волны оптического диапазона.

Теоретическое распределение энергии тормозного излучения по частоте выведено Крамером и экспериментально получено Куленкампфом. Спектральная плотность I непрер ы вного спектра рентгеновского излучения при анодном токе i a c анода, вещество которого имеет порядковый номер Z , выражается соотношением

.

Составляющая BZ не зависит от частоты и на называется характеристическим излучением. Обычно ее доля пренебрежимо мала, поэтому будем считать

. (5)

Распределение интенсивностей по длинам волн можно получить из равенства

Где .

Используя формулу (5), с учетом и находим

. (6)

Интенсивность тормозного излучения найдем, используя формулу (5)

или, с учетом соотношения (2),

Где . (7)

Таким образом, интенсивность рентгеновского излучения пропорциональна анодному току, квадрату анодного напряжения и атомному номеру вещества анода.

Место падения электронов на анод называется фокусом. Его диаметр составляет несколько миллиметров, а температура в нем достигает 1900 о С. Отсюда понятен выбор вольфрама в качестве материала для насадки: он имеет большой атомный номер (74) и высокую температуру плавления (3400 о С). Напомним, что атомный номер меди равен 29, а температура плавления «всего» 1700 о С.

Из формулы (7) следует, что интенсивность рентгеновского излучения можно регулировать, изменяя ток анода (ток накала катода) и анодное напряжение. Однако во втором случае кроме интенсивности излучения будет меняться и его спектральный состав. Формула (6) показывает, что спектральная интенсивность является сложной функцией длины волны. Она начинается из нуля при , достигает максимума при 1,5 и затем асимптотически стремится к нулю. Составляющие рентгеновского излучения с длинами волн, близкими к называют жестким излучением, а имеющие длины волн, намного большие – мягким излучением.

Анод простейшей рентгеновской трубки охлаждается конвекционно, и поэтому такие трубки имеют небольшую мощность. Для ее повышения применяют активное охлаждение маслом. Анод трубки делают полым и подают в него масло под давлением 3 – 4 атм. Этот способ охлаждения не очень удобен, так как требует дополнительно громоздкого оборудования: насос, шланги и др.

При больших мощностях трубок наиболее эффективным способом охлаждения является применение вращающегося анода. Анод выполнен в виде усеченного конуса, образующая которого составляет с основанием угол 11–15 о . Боковая поверхность анода армирована вольфрамом. Анод вращается на стержне, соединенном с металлическим стаканом, к которому

подводится анодное напряжение. На колбу надевается трехфазная обмотка, являющаяся статором. Обмотка статора питается током промышленной или повышенной частоты, например 150 Гц. Статор создает вращающееся магнитное поле, которое увлекает за собой ротор. Частота вращения анода достигает 9000 об/мин. При вращении анода фокус перемещается по его поверхности. В силу тепловой инерции площадь теплоотдачи увеличивается во много раз по сравнению с неподвижным анодом. Она равна 2r  D ф, где D ф – диаметр фокусного пятна, а r – его радиус вращения. Трубки с вращающимся анодом допускают очень большие нагрузки. В современных трубках обычно два фокуса и соответственно две спирали накала.

В табл. 1 приведены параметры некоторых медицинских рентгеновских трубок.

Таблица 1. Параметры рентгеновских трубок

Тип трубки

Анодное напряжение, кВ

Номинальная мощность за 1 с, кВт

С неподвижным анодом

0,2БД-7–50 50 0,2 5Д1

3БД-2–100 100 3,0 РУМ

С вращающимся анодом

10 БД-1–110 110 10,0 Фл 11Ф1

8–16 БД-2–145 145 8,0; 16,0 РУМ-10

14–30 БД-9–150 150 14,0; 30,0 РУМ-20

2. Виды рентгеновских исследований

Большинство рентгеновских исследований основано на преобразовании рентгеновского излучения, прошедшего через ткани человека. При прохождении рентгеновских лучей через вещество часть лучистой энергии в нем задерживается. При этом происходит не только количественное изменение – ослабление интенсивности, но и качественное – изменение спектрального состава: более мягкие лучи задерживаются сильнее и излучение на выходе становится в целом более жестким.

Ослабление рентгеновского излучения происходит за счет поглощения и рассеивания. При поглощении рентгеновские кванты выбивают электроны из атомов вещества, т.е. ионизируют его, в чем и проявляется вредное воздействие рентгеновского излучения на живые ткани. Спектральный коэффициент поглощения пропорционален . Таким образом, мягкие лучи поглощаются значительно сильнее, чем жесткие (и, как на первый взгляд ни странно, приносят больше вреда). Ослабление за счет рассеяния в основном сказывается при очень коротких волнах, которые в медицинской рентгенологии не используются.

Установлено, что если относительный коэффициент поглощения рентгеновского излучения воды (для излучения средней жесткости) принять равным единице, то для воздуха он составит 0,01; для жировой ткани – 0,5; углекислого кальция – 15,0; фосфорнокислого кальция – 22,0. Другими словами, в наибольшей степени рентгеновские лучи поглощаются костями, в значительно меньшей степени мягкими тканями и меньше всего тканями, содержащими воздух.

Преобразователи рентгеновского излучения обычно имеют большую активную площадь, на точки которой воздействуют отдельные лучи, прошедшие по определенным направлениям через объект. При этом они испытывают разное затухание, зависящее от свойств тканей и сред, встречающихся на направлении луча. Наиболее важным параметром для визуализации рентгеновских изображений является линейный коэффициент ослабления . Он показывает, во сколько раз уменьшается интенсивность рентгеновского излучения на очень маленьком отрезке пути луча, на котором ткань или среду можно считать однородной.

I B = I 0 exp(-).

Коэффициент линейного затухания  меняется вдоль пути луча и общее затухание определяется поглощением всеми тканями, встречающимися на нем.

Энергетическая зависимость коэффициента ослабления рентгеновского излучения – с ростом энергии он уменьшается – приводит и к его зависимости от расстояния, пройденного лучом. Действительно, по мере движения луча отсеиваются его более мягкие компоненты и остаются все более жесткие, которые поглощаются меньше. Эта специфическая особенность не создает каких-либо проблем для обычных рентгеновских исследований, однако имеет большое значение в рентгеновской компьютерной томографии.

В связи с изменением спектрального состава рентгеновского излучения, прошедшего через вещество, усложняется и зависимость интенсивности I П прошедшего излучения от анодного напряжения

где n = 2–6.

Одним из самых распространенных видов рентгеновских исследований до сих пор остается рентгенография – получение рентгеновских снимков на специальной рентгеновской пленке.

Излучение от рентгеновского источника вначале проходит через фильтр – тонкий лист из алюминия или меди, который отсеивает мягкие составляющие. Для диагностики они не имеют большого значения, а пациенту несут дополнительную лучевую нагрузку и могут вызвать рентгеновский ожог. Пройдя через объект, рентгеновское излучение попадает на приемник, который имеет вид кассеты. В ней размещены рентгеновская пленка и усилительный экран. Экран представляет собой плотный лист картона. Его сторона, обращенная к пленке, покрыта люминесцирующим слоем, например, вольфрамата кальция CaWO 4 или ZnS  CdS  Ag , способным светиться под действием рентгеновских лучей. Оптическое излучение засвечивает эмульсионный слой рентгеновской пленки и вызывает реакцию в соединениях серебра. Между интенсивностями излучений обоих видов сохраняется пропорциональность, поэтому участки объекта, соответствующие более сильному поглощению рентгеновского излучения (например, костные ткани), на снимке выглядят более светлыми.

На ранней стадии развития рентгеновской техники применялась прямая съемка – без усилительного экрана. Однако ввиду малой толщины эмульсионного слоя в нем задерживалась очень небольшая часть общей энергии излучения, и для получения качественного снимка приходилось использовать большое время съемки. Это приводило к значительным лучевым нагрузкам на пациентов и обслуживающий персонал. Первым результаты этого воздействия ощутил на себе сам Рентген.

Различают излученную и поглощенную дозы рентгеновского излучения. Обе они могут выражаться в рентгенах. В медицинской радиологии для оценки поглощенной дозы используют специальную единицу – Зиверт (Зв): 13 в эквивалентен примерно 84 Р. В отличие от излученной дозы поглощенная доза не может быть точно измерена. Она определяется расчетным путем или с помощью моделей (фантомов). Поглощенная доза характеризует степень облучения человека и, следовательно, вредного воздействия на организм. Во время одного рентгеновского снимка пациент получает от 0,5 до 5 мР.

Качество снимка (контрастность) зависит от выдержки и экспозиции. Экспозицией называется произведение интенсивности РИ на выдержку: H = It . Снимок одинакового качества можно получить при одинаковой экспозиции, т.е. при большой интенсивности и малой выдержке или при малой интенсивности и большой выдержке. Так как экспозиция представляет собой энергию, то она определяет и поглощенную дозу облучения.

Выше уже отмечался один из существенных недостатков рентгенографии – большой расход серебра (5–10 г. на 1 м 2 пленки). Поэтому ведется интенсивная разработка методов и средств для «беспленочных» рентгеновских исследований. Одним из таких путей является электрорентгенография. Рентгенологическое исследование проводят так же, как и при рентгенографии, только вместо кассеты с пленкой и усилительным экраном используют кассету с полупроводниковой (селеновой) пластиной. Пластину предварительно заряжают в специальном устройстве с однородным электрическим полем. Под действием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, и пластина частично теряет свой заряд. На пластине создается скрытое электростатическое изображение, отражающее структуру снимаемого объекта. В дальнейшем это изображение с помощью графитового порошка переносится на плотную бумагу и закрепляется. Пластину очищают от остатков порошка и используют повторно. Метод электрорентгенографии отличается простотой и невысокой стоимостью материалов, однако он уступает по чувствительности в 1,5–2 раза обычной рентгенографии. Поэтому главной областью ее применения являются ургентные исследования – травматология конечностей, таза и других костных образований.

Быстро развивается другая важная отрасль рентгенодиагностики – ретгеноскопия. До сравнительно недавних пор (60-е годы ХХ столетия) применялась прямая рентгеноскопия. Рентгеновское излучение, прошедшее через объект, попадало на люминесцирующий экран – металлический лист, покрытый слоем ZnS или CdS . Врач располагался позади экрана и наблюдал оптическое изображение. Для получения изображения достаточной яркости приходилось увеличивать интенсивность излучения. При этом и пациент, и врач (несмотря на защитные меры) подвергались сильному облучению. И все же яркость изображения оставалась небольшой, и наблюдение приходилось производить в затемненном помещении. В дальнейшем рентгеноскопия из своего первоначального вида разветвилась на два направления – флюорографию и рентгеновские телевизионные системы.

Флюорография является самым распространенным рентгенологическим исследованием и предназначена прежде всего для массовой диагностики туберкулеза.

Рентгеновское излучение, прошедшее через объект, попадает на люминесцирующий экран, на котором возникает оптическое изображение. Световое излучение фокусируется и концентрируется оптической системой и засвечивает рулонную пленку, на которой получаются снимки размером 100100 или 7070. Качество флюорографических снимков несколько хуже рентгенографических, а доза облучения, получаемая при этом исследовании, достигает 5 мР. На флюорограммы ежегодно расходуются десятки млн. метров пленки.

Существенно уменьшить лучевую нагрузку на пациента и улучшить качество снимка позволяет применение преобразователей рентгеновского излучения в оптическое – рентгеновских электронно-оптических преобразователей (РЭОП), устройство и принцип действия которых будут рассмотрены в разделе «Рентгеновские телевизионные системы».

Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. В качестве веществ, задерживающих рентгеновское излучение сильнее, чем мягкие ткани, используют йод или барий (для получения рентгеновских снимков пищеварительного тракта). Искуственное контрастирование применяют также в ангиографии – рентгенография кровеносных и лимфатических сосудов. Все манипуляции при ангиографии осуществляются под контролем рентгенотелевидения.

Рентгенологическое исследование I

применяется для изучения строения и функций органов в норме и при патологии. Позволяет диагностировать , определять локализацию и протяженность выявленных патологических изменений, а также их динамику в процессе лечения.

Исследование основано на том, что рентгеновского излучения, проходя через органы и ткани, поглощается ими в неодинаковой степени, что дает возможность получить их изображение на специальном экране или рентгенографической пленке. Разница в оптической плотности соседних участков изображения на рентгенограмме (или разница в яркости свечения флюоресцентного экрана) обусловливает изображения. Многие органы и ткани организма, отличающиеся друг друга плотностью и химическим составом, по-разному поглощают , что обусловливает естественную контрастность получаемого изображения. Благодаря этому Р. и. костей и суставов, легких, сердца и некоторых других органов можно проводить без специальной подготовки. Для исследования желудочно-кишечного тракта, печени, почек, бронхов, сосудов, естественная контрастность которых недостаточна, прибегают к искусственному контрастированию: в вводят специальные безвредные Рентгеноконтрастные средства , поглощающие значительно сильнее (сульфат бария, органические соединения йода) или слабее (газ), чем исследуемая структура. С целью искусственного контрастирования органов и тканей принимают внутрь (например, при Р. и. желудка), вводят в кровеносное русло (например, при урографии), в полости или ткани, окружающие (например, при лигаментографии), или непосредственно в полость (просвет) либо паренхиму органа, (например, при гайморографии, бронхографии, гепатографии). При рентгеноскопии (Рентгеноскопия) интенсивные тени на экране соответствуют плотным органам и тканям, более светлые тени относятся к менее плотным образованиям, содержащим газ, т.е. изображение является позитивным (рис. 1, а ). На рентгенограммах соотношение затемнений и просветлений обратное, т.е. изображение негативное (рис. 1, б ). При описании снимков всегда исходят из соотношения свойственных позитивному изображению, т.е. светлые участки на рентгенограммах называют затемнениями, темные - просветлениями.

Выбор оптимального метода зависит от диагностической задачи в каждом конкретном случае. к Р. и. определяются состоянием больного и спецификой конкретного метода Р. и. (например, противопоказана при острых воспалительных заболеваниях дыхательных путей).

Рентгенологическое исследование проводят в рентгеновских кабинетах. При обследовании лиц, находящихся в тяжелом состоянии (например, шоке или повреждениях, требующих неотложных вмешательств), Р. и. проводят непосредственно в реанимационном отделении или в операционной с помощью палатных или перевязочных рентгеновских установок. По показаниям возможно обследование больных в перевязочных, приемных отделениях, больничных палатах и др.

Исследование в зависимости от направления пучка рентгеновского излучения по отношению к плоскости тела проводят в основном в прямой, боковой и косых проекциях. При прямой проекции (рис. 2, а, б ) направлен сагиттально, т.е. перпендикулярно фронтальной плоскости тела. При передней прямой (дорсовентральной) проекции источник излучения расположен позади исследуемого, а или пленка прилежат к передней поверхности тела, при задней прямой (вентродорсальной) проекции расположение источника и приемника излучения обратное. При боковой проекции (левой или правой) центральный луч проходит перпендикулярно сагиттальной плоско тела, т. е. вдоль его фронтальной плоскости (рис. 2, в, г ). Косые проекции характеризуется направлением центрального луча под углом к фронтальной и сагиттальной плоскостям (рис. 2, д, е, ж, з ). Существует четыре косых проекции - правая и левая передние и правая и левая задние. В ряде случаев при Р. и. приходится использовать дополнительные проекции, получаемые путем вращения пациента вокруг одной оси (чаще продольной). Такое исследование называют многопроекционным. Если этого бывает недостаточно, больного поворачивают также и вокруг других осей (см. Полипозиционное исследование). При исследовании ряда анатомических образований, например глазницы, среднего уха, используют специальные проекции - осевые (центральный луч направлен вдоль оси органа), тангенциальные (центральный луч направлен по касательной к поверхности органа) и др.

Рентгенологическое исследование начинается, как правило, с рентгеноскопии (Рентгеноскопия) или рентгенографии (Рентгенография). С помощью рентгеноскопии исследуют двигательную функцию некоторых внутренних органов (сердца, желудка, кишечника и др.), определяют смещаемость патологических образований при пальпации или изменении положения пациента и др. , обладающая высокой разрешающей способностью, дает возможность более отчетливо и рельефно отобразить структуры организма.

Рентгеноскопия и составляют группу общих рентгенологических методов. Они также лежат в основе частных и специальных рентгенологических методов, основанных на применении особых приемов и технических средств, к которым прибегают с целью получения дополнительной информации о функции и структуре исследуемого органа. К частным методам относятся , Телерентгенография и Электрорентгенография , Томография, Флюорография и др. Для регистрации движений органов (например, сердца, легких, диафрагмы) применяют рентгеноскопию с использованием видеомагнитной записи изображения. Специальные методы (Бронхография , Холеграфия, Урография, Ангиография и др.) предназначены для изучения определенной системы, органа или его части, обычно после искусственного контрастирования. Применяют их по строгим показаниям лишь в тех случаях, когда более простые методы не обеспечивают необходимых диагностических результатов.

Иногда необходима предварительная подготовка пациента, обеспечивающая качество Р. и., уменьшающая связанные с исследованием неприятные ощущения, предупреждающая развитие осложнений. Так, перед проведением Р. и. толстой кишки назначают , очистительные ; в случае необходимости проведения при Р. и. пункции сосуда или протока применяют местную анестезию; перед введением некоторых рентгеноконтрастных веществ назначают гипосенсибилизирующие препараты; для более четкого выявления в ходе исследования функционального состояния органа можно использовать различные лекарственные препараты (стимулирующие перистальтику желудочно-кишечного тракта, уменьшающие сфинктеров и др.).

Анализ полученной при Р. и. информации слагается из нескольких последовательных этапов: выделения рентгенологических симптомов, истолкования рентгенологической картины, сопоставления рентгенологических данных с результатами клинических и проводившихся ранее рентгенологических исследований, дифференциального диагноза и формулирования окончательного заключения.

Осложнения, связанные с применением Р. и., наблюдаются редко. Они в основном возникают при искусственном контрастировании полостей, органов и систем организма и проявляются аллергическими реакциями, острым расстройством дыхания, коллапсом, рефлекторными нарушениями сердечной деятельности, эмболиями, повреждениями органов и тканей. Подавляющее большинство осложнений развивается в процессе проведения исследования или в первые 30 мин после его окончания. Осложнения в виде лучевых повреждений (Лучевые повреждения) при строгом соблюдении всех правил противолучевой защиты (Противолучевая защита) не наблюдаются. Они могут возникнуть лишь при грубом нарушении правил работы с источниками ионизирующего излучения (эксплуатация неисправной аппаратуры, нарушение методики исследования, отказ от применения средств индивидуальной защиты и др.). Защита от излучения больных и персонала достигается правильной планировкой рентгеновского кабинета, ограничением поля облучения размерами исследуемой области и экранированием зоны расположения половых органов, использованием дополнительной фильтрации первичного пучка излучения и средств индивидуальной защиты и др.

Рентгенологическое исследование детей. Основным методом Р. и. детей, особенно новорожденных, является рентгенография. Она сопровождается меньшей лучевой нагрузкой на пациента и в то же время позволяет получить достаточно полную и объективную информацию об исследуемом органе. При исследовании детей более старшего возраста рентгенографию дополняют рентгеноскопией, при этом предпочтение отдают рентгенотелевизионному исследованию, позволяющему снизить лучевую нагрузку. Большую часть специальных исследований у детей провести не представляется возможным. Для фиксации детей раннего возраста во время исследования в оптимальном положении пользуются соответствующими приспособлениями и устройствами. Области тела, не подлежащие исследованию, экранируют просвинцованной резиной или защитной ширмой. Массовые флюорографические исследования детей в возрасте до 12 лет запрещаются.

Библиогр.: Зедгенидзе Г.А. и Осипкова Т.А. Неотложная у детей, Л., 1980, библиогр.; Кишковский А.Н. и Тютин Л.А. Методика и техника электрорентгенографии, М., 1982; Линденбратен Л.Д. и Наумов Л.Б. Методы рентгенологического исследования органов и систем человека, Ташкент, 1976.

Рентгеновское изображение кисти в норме: позитивное изображение, наблюдаемое при рентгеноскопии (более плотным тканям соответствуют более темные участки изображения)">

Рис. 1а). Рентгеновское изображение кисти в норме: позитивное изображение, наблюдаемое при рентгеноскопии (более плотным тканям соответствуют более темные участки изображения).

Рис. 2. Стандартные рентгенологические проекции: а - передняя прямая; б - задняя прямая; в - левая боковая; г - правая боковая; д - правая передняя косая; е - левая передняя косая; ж - правая задняя косая; з - левая задняя косая; 1 - источник рентгеновского излучения; 2 - поперечный срез тела исследуемого; 3 - позвоночник; 4 - приемник излучения; Ф - фронтальная плоскость, пунктиром обозначен центральный луч пучка излучения.

II Рентгенологи́ческое иссле́дование

в медицине - исследование морфологических и функциональных особенностей органов и систем человека, в т.ч. с целью диагностики болезней, основанное на получении и анализе рентгеновских изображений соответствующих участков тела.


1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Рентгенологическое исследование" в других словарях:

    Рентгенологическое исследование - 25. Рентгенологическое исследование использование рентгеновского излучения для обследования пациента в целях диагностики и/или профилактики заболеваний, состоящее из одной или нескольких рентгенологических процедур. Источник … Словарь-справочник терминов нормативно-технической документации

    рентгенологическое исследование

    Изучение рентгеновского снимка. Рентгенология раздел радиологии, изучающий воздействие на организм человека рентгеновского излучения, возникающие от этого заболевания и патологические состояния, их лечение и профилактику, а также методы… … Википедия

    рентгенологическое исследование органов грудной клетки - rus рентгенологическое исследование (с) органов грудной клетки eng chest radiography fra radiographie (f) thoracique deu Thoraxröntgen (n), Thoraxröntgenaufnahme (f) spa radiografía (f) torácica … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Исследование морфологических и функциональных особенностей органов и систем человека, в т. ч. с целью диагностики болезней, основанное на получении и анализе рентгеновских изображений соответствующих участков тела … Большой медицинский словарь

    См. Томография … Большой медицинский словарь

    I Полипозиционное исследование (греч. poly много + лат. positio установка, положение) метод рентгенологического исследования, при котором, изменяя положение тела больного, получают оптимальные проекции исследуемого органа. При перемене положения… … Медицинская энциклопедия

    рентгеновское исследование - rus рентгеновское исследование (с), рентгенографическое исследование (с); рентгенологическое исследование (с) eng X ray examination, radiological examination fra examen (m) radiologique deu Röntgenuntersuchung (f) spa examen (m) con rayos X,… … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    рентгенографическое исследование - rus рентгеновское исследование (с), рентгенографическое исследование (с); рентгенологическое исследование (с) eng X ray examination, radiological examination fra examen (m) radiologique deu Röntgenuntersuchung (f) spa examen (m) con rayos X,… … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Рентгенологическое или радиоизотопное исследование, осуществляемое путем последовательного изменения положения тела исследуемого относительно направления пучка рентгеновского излучения или приемника излучения (детектора) с целью получения… … Большой медицинский словарь

Книги

  • Рентгенологическое исследование грудной клетки. Практическое руководство , Н. Абанадор , Л. Кампер , Х. Раттунде , К. Центаи , Книга представляет собой практическое руководство по рентгенографии грудной клетки, обеспечивающее врача информацией по использованию данного метода исследования с максимальной… Категория:

Современные методы рентгенологических исследований классифицируются, прежде всего, по типу аппаратной визуализации рентгеновских проекционных изображений. То есть основные виды рентгенодиагностики дифференцируются тем, что каждый построен на использовании одного из нескольких существующих типов приемников рентгеновского излучения: рентгеновская пленка, флюоресцирующий экран, электронно-оптический рентгеновский преобразователь, цифровой детектор и др.

Классификация рентгенодиагностических методов

В современной рентгенологии существуют общие методы исследования и специальные или вспомогательные. Практическое применение этих методов возможно лшь с использованием рентген аппаратов К общим методам относятся:

  • рентгенография,
  • рентгеноскопия,
  • телерентгенография,
  • цифровая рентгенография,
  • флюорография,
  • линейная томография,
  • компьютерная томография,
  • контрастная рентгенография.

Специальные исследования включают обширную группу методов, позволяющих решать самые разнообразные диагностические задачи, и бывают инвазивные и неинвазивные. Инвазивные связаны с введением в различные полости (пищеварительный канал, сосуды) инструментов (рентгеноконтрастных катетеров, эндоскопов) для проведения диагностических процедур под контролем рентгеновского излучения. Неинвазивные методы не связаны с введением инструментов.

Каждый из выше перечисленных методов отличается своими достоинствами и недостатками, а значит, и определенными пределами диагностических возможностей. Но все они характеризуются высокой информативностью, простотой выполнения, доступностью, способностью взаимно дополнять друг друга и занимают в целом одно из ведущих мест в медицинской диагностике: более, чем в 50% случаев постановка диагноза невозможна без применения рентгенодиагностики.

Рентгенография

Метод рентгенографии – это получение фиксированных изображений какого-либо объекта в спектре рентгеновского излучения на чувствительном к нему материале (рентгеновская фотопленка, цифровой детектор) по принципу обратного негатива. Преимуществом метода является небольшая лучевая нагрузка, высокое качество изображения с четкой детализацией.

Недостатком рентгенографии является невозможность наблюдения динамических процессов и долгий период обработки (в случае с пленочной рентгенографией). Для изучения динамических процессов существует способ покадровой фиксации изображения – рентгеновская кинематография. Используется для изучения процессов пищеварения, глотания, дыхания, динамики кровообращения: рентгенофазокардиография, рентгенопневмополиграфия.

Рентгеноскопия

Метод рентгеноскопии – это получение рентгеновского изображения на флюоресцирующем (люминесцентном) экране по принципу прямого негатива. Позволяет изучать динамические процессы в реальном времени, оптимизировать положение пациента по отношению к рентгеновскому пучку при исследовании. Рентгеноскопия позволяет оценить как структуру органа, так и его функциональное состояние: сократимость или растяжимость, смещаемость, наполняемость контрастным веществом и его прохождение. Многопроекционность метода позволяет быстро и точно выявить локализацию существующих изменений.


Существенный недостаток рентгеноскопии – большая радиационная нагрузка на пациента и исследующего врача, а так же необходимость проведения процедуры в темном помещении.

Рентгенотелевидение

Телерентгеноскопия – это исследование, использующее преобразование рентгеновского изображения в телесигнал с помощью электронно-оптического преобразователя или усилителя (ЭОП). Позитивное рентгеновское изображение воспроизводится на телемониторе. Преимущество методики в том, что она существенно нивелирует недостатки обычной рентгеноскопии: снижается лучевая нагрузка на пациента и персонал, можно управлять качеством изображения (контрастность, яркость, высокое разрешение, возможность увеличения изображения), процедура проводится в светлом помещении.

Флюорография

Метод флюорографии основан на фотографировании полномерного теневого рентгеновского изображения с флуоресцентного экрана на фотопленку. В зависимости от формата пленки аналоговая флюорография бывает мелко-, средне- и крупнокадровая (100х100 мм). Используется для массовых профилактических исследований, в основном органов грудной клетки. В современной медицине используется более информативная крупнокадровая флюорография или цифровая флюорография .


Контрастная рентгенодиагностика

Контрастная рентгенодиагностика основана на применении искусственного контрастирования путем введения в организм рентгеноконтрастных веществ. Последние разделяются на рентгенопозитивные и рентгенонегативные. Рентгенопозитивные вещества в своей основе содержат тяжелые металлы – йод или барий, поэтому поглощают излучение сильнее, чем мягкие ткани. Рентгенонегативные вещества – это газы: кислород, закись азота, воздух. Они поглощают рентгеновское излучение меньше, чем мягкие ткани, создавая тем самым контраст по отношению к обследуемому органу.

Искусственное контрастирование используется в гастроэнтерологии, кардиологии и ангиологии, пульмонологии, в урологии и гинекологии, применяется в ЛОР-практике и при исследовании костных структур.

Как работает рентгеновский аппарат

Классификация методов рентгенологического исследования

Рентгенологические методики

Основные методы Дополнительные методы Специальные методы – необходимо дополнительное контрастирование
Рентгенография Линейная томография Рентгеннегативными веществами (газы)
Рентгеноскопия Зонография Рентген-позитивные вещества Соли тяжелых металлов (сульфак окиси бария)
Флюорография Кимография Йодосодержащие водорастворимые вещества
Электро-рентгенография Электрокимография · ионные
Стереогрентгено-графия · неионные
Рентгенокинемато-графия Йодосодержащие жирорастворимые вещества
Компьютерная томография Тропного действия вещества.
МРТ

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм2. Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Преимущества рентгенографии

1. Широкая доступность метода и лёгкость в проведении исследований.

2. Для большинства исследований не требуется специальной подготовки пациента.

3. Относительно низкая стоимость исследования.

4. Снимки могут быть использованы для консультации у другого специалиста или в другом учреждении (в отличие от УЗИ-снимков, где необходимо проведение повторного исследования, так как полученные изображения являются оператор-зависимыми).

Недостатки рентгенографии

1. «Замороженность» изображения - сложность оценки функции органа.

2. Наличие ионизирующего излучения, способного оказать вредное воздействие на исследуемый организм.

3. Информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами.

4. Без применения контрастирующих веществ рентгенография практически неинформативна для анализа изменений в мягких тканях.

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Преимущества рентгеноскопии Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость. Метод также позволяет достаточно быстро оценить локализацию некоторых изменений, за счет вращения объекта исследования во время просвечивания (многопроекционное исследование). При рентгенографии для этого требуется проведение нескольких снимков, что не всегда возможно (пациент ушел после первого снимка не дождавшись результатов; большой поток пациентов, при котором делаются снимки только в одной проекции). Рентгеноскопия позволяет контролировать проведение некоторых инструментальных процедур - постановка катетеров, ангиопластика (см. ангиография), фистулография.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

Перельман М. И., Корякин В. А.

Флюорография . Этот метод широко применяется при массовых обследованиях населения. Другое название этого рентгенологического метода - фоторентгенография, так как суть его заключается в фотографировании изображения с рентгеновского экрана электронно-оптического усилителя на фотопленку. В зависимости от аппарата и величины фотопленки получают кадры размером 70 х 70 или 100 х 100 мм.

По сравнению с обычной рентгенографией флюорография имеет определенные преимущества. Она позволяет значительно увеличить пропускную способность рентгеновского аппарата, сократить расходы на пленку и ее обработку, облегчить хранение архива рентгенограмм.

Разрешающая способность высококачественной флюорограммы легких в прямой и боковой проекциях с размером кадра 100 х 100 мм почти такая же, как и рентгеновского снимка, хотя ее информативность несколько ниже. До недавнего времени флюорографию легких с размером кадра 70 х 70 мм применяли в основном при массовых обследованиях населения, а при выявлении патологии проводили рентгенографию.

В настоящее время флюорограмма с размером кадра 100 х 100 мм успешно заменяет обзорную рентгенограмму легких и флюорография получает все большее распространение в качестве диагностического метода.

Рентгенография . Рентгенографическое исследование легких начинают с выполнения обзорного снимка в передней прямой проекции (кассета с пленкой у передней грудной стенки). При патологических изменениях в задних отделах легких целесообразно выполнить обзорный снимок в задней прямой проекции (кассета с пленкой у задней грудной стенки).

Далее делают обзорный снимок в боковой проекции - правый и левый. При выполнении правого бокового снимка к кассете с пленкой прилежит правая боковая поверхность грудной клетки, при выполнении левого - левая.

Рентгенограммы в боковых проекциях необходимы для определения локализации патологического процесса в долях и сегментах легких, выявления изменений в междолевых щелях и в легких за тенями сердца и диафрагмы.

При двусторонней легочной патологии лучше выполнять снимки не в боковых, а в косых проекциях, на которых получаются раздельные изображения правого и левого легких.

Рентгеновские снимки обычно выполняют на высоте вдоха. В условиях выдоха снимки делают для лучшего выявления края спавшегося легкого и плевральных сращений при наличии пневмоторакса, а также для определения смещения органов средостения при патологии легких и плевры.

Для повышения информативности рентгенограмм можно увеличить время экспозиции или жесткость рентгеновских лучей. Такие снимки называют суперэкспонированными и жесткими. Их выполняют больным с экссудативным плевритом и массивными плевральными наложениями, уплотнениями легочной ткани, после хирургических операций на легких, для получения лучшего изображения стенок трахеи и бронхов.

На жестких и суперэкспонированных снимках могут выявляться различные структуры в зонах интенсивного затемнения, не видимые на обычном снимке, но тени малой интенсивности не определяются.

Обзорные рентгенограммы в прямой и боковой проекциях дают не только общее представление о состоянии органов грудной полости, но и важную диагностическую информацию. Их дополняют прицельными снимками, производимыми под контролем рентгенотелевидения узким пучком лучей.

При этом больному придают такое положение, которое позволяет освободить изображение исследуемого легочного поля от наложения мешающих костных и других образований.

Сочетать информацию снимков, сделанных с использованием мягких, средних или жестких лучей, с картиной суперэкспонированных снимков в значительной степени позволяет электрорентгенография или ксерография. Изображение получают на селеновой пластине, а затем с помощью графитового порошка переносят на обычную белую бумагу.

По сравнению с обычными рентгенограммами на электрорентгенограммах вследствие «краевого эффекта» лучше выявляются контуры трахеи и бронхов, край коллабированного легкого при пневмотораксе, полости в легких, очаги, остаточные плевральные полости, уровень небольшого количества жидкости, межмышечные и подкожные скопления воздуха. Важным преимуществом электрорентгенографии является ее экономичность, так как можно обходиться без рентгеновской пленки.

Томография . Послойное рентгенологическое исследование является одним из основных методов диагностики заболеваний легких, особенно туберкулеза. Высококачественные томограммы дают дополнительную информацию о наличии и локализации очагов, участков распада легочной ткани, каверн, о состоянии бронхов и крупных легочных сосудов.

При туберкулезе легких томография имеет важное значение для наблюдения за процессом и для контроля эффективности лечения (рассасывание очагов и инфильтрации, закрытие каверн) .

План томографического исследования составляют после рентгенографии: определяют целесообразность обзорной или прицельной томографии, проекцию, направление размазывания (продольное или поперечное), режим снимков, глубину и число слоев.

При обзорной томографии делают снимки нескольких слоев: первый слой в 3 - 4 см от кожи спины, дальнейшие слои через 1-2 см, последний, передний, слой в 2-3 см от кожи передней грудной стенки.

Разновидностью томографии является зонография : исследуется более толстый слой легочной ткани. Зонография не требует высокой точности в выборе слоя, а несколько худшее качество изображения окупается более широким объемом информации, содержащейся на одном снимке, и меньшей лучевой нагрузкой на больного.

Особенности легочной патологии более четко определяются при электрорентгенотомографии : лучше визуализируются характер стенок внутрилегочных полостей, изменения лимфатических узлов, сосудов.

Компьютерная томография . Этот метод рентгенологического исследования получил всеобщее признание и применяется во всех областях клинической медицины. Компьютерная томография обеспечивает получение изображения поперечных слоев человеческого тела (аксиальная проекция).

Рентгеновская трубка, находящаяся в круговой раме, вращается вокруг продольной оси тела пациента. Тонкий пучок лучей проходит под разными углами через исследуемый слой и улавливается многочисленными сцинтилляционными детекторами, движущимися вместе с трубкой.

Разная плотность тканей, через которые проходят рентгеновские лучи, обусловливает неодинаковое изменение интенсивности их пучка, что с высокой точностью регистрируется детекторами, обрабатывается компьютером и трансформируется в изображение исследуемого поперечного слоя на телевизионном экране.

Таким образом, компьютерная томограмма представляет собой не снимок в обычном понимании этого слова, а рисунок, сделанный компьютером на основе математического анализа степени поглощения рентгеновских лучей тканями различной плотности (вычислительная томография).

Современные компьютерные томограммы позволяют исследовать поперечные слои толщиной от 2 до 10 мм. Сканирование одного слоя продолжается несколько секунд. Яркость и контрастность изображения можно изменять в больших пределах.

Значительное усиление контрастности сосудов удается получить при внутривенном введении больному небольшого количества рентгеноконтрастного раствора.

Аксиальные (поперечные) изображения можно с помощью компьютера реконструировать в прямые, боковые и косые томограммы исследованной области. Все результаты компьютерной томографии параллельно с изображением на телевизионном экране хранятся в памяти компьютера и могут быть воспроизведены на поляроидной фотобумаге или рентгеновской пленке.

Большим достоинством компьютерной томографии является количественная оценка плотности исследуемых тканей и сред, которую выражают в условных единицах по шкале Хоунсфилда.

При исследовании органов грудной полости компьютерная томография позволяет уточнить локализацию и распространение всех патологических образований, оценить их размеры и в динамике наблюдать за изменением их величины и плотности.

Метод представляет ценность при установлении характера патологических процессов в средостении, что невозможно определить при стандартной томографии. Компьютерная томография дает ценную информацию о состоянии плевральной полости, оставшейся после операции части легкого, и позволяет обеспечить высокую точность трансторакальной биопсии и сложных плевральных пункций. При компьютерной томографии органов дыхания выполняют 6-12 стандартных томографических срезов.

Рентгеноскопия . Для рентгеноскопии используют, как правило, электронно-оптическое усиление рентгеновского изображения и рентгенотелевидение.

Применяют этот метод после рентгенографии по определенным показаниям: с его помощью проводят контроль во время производства прицельных снимков, рентгенобронхологических, ангиографических, бронхографических исследований и фистулографии: используют для выявления свободно перемещающейся жидкости в плевральной полости, для установления подвижности патологических образований и их связи с грудной стенкой и органами средостения, для определения подвижности диафрагмы и состояния плевральных синусов.

Рентгеноскопия необходима для проведения проб с повышением и понижением внутригрудного давления (пробы Вальсальвы и Мюллера, симптом Гольцкнехта - Якобсона). Документация результатов этих проб может быть сделана с помощью видеозаписи и рентгенокиносъемки.

Ангиопульмонография . Под этим термином понимают рентгенологическое исследование легочной артерии и ее ветвей с введением контрастного вещества. Существуют две основные методики ангиопульмонографии - общая и селективная.

При проведении общей ангиопульмонографии контрастный раствор вводят через катетер в вену руки, в верхнюю полую вену или в правые полости сердца. Рентгеновские снимки производят серийно на специальном этнографическом аппарате.

Общая ангиопульмонография требует значительного количества контрастного вещества (50-60 мл) и обычно не обеспечивает четкого изображения легочных сосудов, особенно при патологических изменениях в легких. Ампутация сосудов не всегда отражает их истинное состояние.

Селективная ангиопульмонография технически хотя и сложнее, чем общая, но используется чаще. Ее осуществляют после катетеризации правых предсердия и желудочка сердца и соответствующей ветви легочной артерии. Серийные снимки делают после введения 10-12 мл раствора контрастного вещества. Изображение сосудов получается четкое.

Обычно селективную ангиопульмонографию сочетают с регистрацией давления в малом круге кровообращения и исследованием газов крови.

Показания к ангиопульмонографии ограничены. Ее применяют для диагностики тромбоза и эмболии легочной артерии, а также для выяснения способности к расправлению длительно коллабированного легкого: по состоянию сосудов судят о степени пневмофиброза.

Современные технические возможности позволяют выполнять общую ангиопульмонографию в виде числовой, или дигитальной, ангиопульмонографии. Ее осуществляют с помощью введения в вену небольшого количества контрастного вещества. При этом компьютерная обработка видеосигналов позволяет получать высококачественные снимки.

Бронхиальная артериография . Метод заключается в катетеризации, контрастировании и рентгенографии бронхиальных артерий и их ветвей. Исследование проводят под местной анестезией и контролем рентгенотелевидения.

Специальной иглой с мандреном пунктируют бедренную артерию ниже паховой складки. Мандрен заменяют металлическим проводником, по которому в просвет артерии вводят рентгеноконтрастный катетер с изогнутым концом. Затем проводник извлекают, а катетер проводят в аорту.

Кончиком катетера последовательно отыскивают устья бронхиальных артерий и вводят в них катетер, а затем - контрастное вещество (урографин, уротраст или их аналоги) со скоростью 35 мл, с в количестве 5-12 мл. Производят серийную рентгенографию.

Основным показанием к бронхиальной артериографии является легочное кровотечение неясной этиологии и локализации. В таких случаях на артериограммах могут быть выявлены расширение и патологическая извитость бронхиальных артерий, выход контрастного вещества за их пределы (экстравазация), очаговая или диффузная гиперваскуляризация, аневризмы бронхиальных артерий, их тромбоз, ретроградное заполнение периферических ветвей легочной артерии через артерио-артериальные анастомозы.

Противопоказаниями к исследованию являются тяжелый атеросклероз, тучность, выраженная легочно-сердечная недостаточность.

Осложнением бронхиальной артериографии может быть возникновение гематомы в области пункции бедренной артерии. Редким, но тяжелым осложнением является сосудистое поражение спинного мозга с нарушением функции нижних конечностей и тазовых органов. Профилактика осложнений обеспечивается строгим соблюдением методических и технических принципов исследования.

Бронхография . Контрастное рентгенологическое исследование бронхов осуществляется под местной анестезией в виде позиционной (ненаправленной) или селективной (направленной) бронхографии. При позиционной бронхографии катетер проводят в трахею через нос. Во время введения контрастного вещества придают оптимальное положение телу пациента.

Селективная бронхография основана на катетеризации исследуемого бронха. Для ее проведения применяют различные по конструкции катетеры и используют разные технические приемы.

Бронхографию больным проводят натощак. При значительном количестве мокроты предварительно осуществляется бронхоскопия для санации бронхиального дерева.

Для местной анестезии используют 10-15 мл 2 % раствора лидокаина. Мягкий катетер проводят через нос и под контролем рентгенотелевидения устанавливают в исследуемом бронхе.

Контроль осуществляют с помощью распыления порошка тантала или, чаще, водорастворимых препаратов, например 5-10 мл пропилйодона. После введения препарата больному предлагают резко выдохнуть и слегка покашлять. При этом контрастное вещество относительно равномерно распределяется по слизистой оболочке и обеспечивает контурное изображение стенок бронхов. Через 2-3 сут пропилйодон гидролизуется и без отделения свободного йода выводится из организма почками.

Проведение исследования под контролем рентгенотелевидения и с видеозаписью позволяет судить об эластичности и подвижности бронхиальных стенок.

Ранее бронхографию применяли широко. В настоящее время ее используют для выяснения наличия бронхоэктазов и определения их локализации и формы. Иногда ее применяют для. лучшей ориентировки при трансбронхиальной биопсии, а также при больших фиброзных изменениях, если другие методы не позволяют выяснить особенности патологии.

Основными противопоказаниями являются острые воспалительные процессы в органах дыхания, легочные кровотечения.

Плеврография . Рентгенологическое исследование контрастированной плевральной полости применяют главным образом у больных с эмпиемой плевры для уточнения границ гнойной полости.

Вначале производят плевральную пункцию и аспирируют плевральное содержимое. Затем под контролем рентгенотелевидения в плевральную полость вводят 30-40 мл теплого рентгеноконтрастного вещества (пропилйодон, урографин, верографин). Снимки делают в разных проекциях, меняя положение больного. После окончания исследования контрастное вещество с остатками плеврального содержимого отсасывают.

Фистулография . Метод используют для обследования больных с различными видами торакальных свищей, в том числе с торакальными и торакобронхиальными.

Свищевои ход заполняют рентгеноконтрастным веществом и затем проводят рентгенографию. В процессе исследования и после анализа снимков выявляют анатомические особенности свища, устанавливают его сообщение с плевральной полостью и бронхиальным деревом.

Перед фистулографией целесообразно с помощью зондирования установить направление свищевого хода. Контрастное вещество вводят в свищ шприцем под контролем рентгенотелевидения. Применяют йодолипол, масляный и водные растворы пропиолйодона. Рентгенограммы производят в нескольких проекциях.

В случае проникновения контрастного препарата в бронхиальное дерево получается ретроградная фистулобронхография. После окончания исследования препарат через свищ по возможности отсасывают, а больной должен хорошо откашляться.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то